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Abstract—In many logistics applications of RFID technology,
goods attached with tags are placed on moving conveyor belts
for processing. It is important to figure out the order of goods
on the belts so that further actions like sorting can be accurately
taken on proper goods. Due to arbitrary goods placement or the
irregularity of wireless signal propagation, neither of the order
of tag identification nor the received signal strength provides
sufficient evidence on their relative positions on the belts. In this
study, we observe, from experiments, a critical region of reading
rate when a tag gets close enough to a reader. This phenomenon,
as well as other signal attributes, yields the stable indication
of tag order. We establish a probabilistic model for recognizing
the transient critical region and propose the OTrack protocol to
continuously monitor the order of tags. To validate the protocol,
we evaluate the accuracy and effectiveness through a one-month
experiment conducted through a working conveyor at Beijing
Capital International Airport.

I. INTRODUCTION

As a promising technique, Radio Frequency Identification
(RFID) systems have been widely adopted to monitor and
classify goods and assets in logistic and supply chain man-
agements [1]–[3]. Tens of thousands of goods enter large
warehouses each day. Considering the manipulation cost and
efficiency, the processing of goods is highly facilitated through
the usage of the RFID technique. A typical application is the
airports and the most representative example is the Hong Kong
International Airport. According to [8], the RFID technique at
airports has been used to 1) assist the existing bar-code system
to improve its reading accuracy, and 2) find an individual’s lug-
gage without removing other luggage in vehicles or aircrafts.
Apart from those existing services, in this paper, we exploit
one new dimension to further benefit the logistic and supply
chain managements by the RFID technique, while it is still
lacking. Goods enter the warehouse from different entrances.
They are processed on conveyor belts and further allocated
to different exists. So far as we know, such a task is mainly
completed by intensive labor force in existing systems. Due
to the large goods volume, the manual processing inevitably
incurs goods loss, which leads to tremendous financial losses
for customers and industries.

In this paper, the solution that we have envisioned can be
illustrated by Fig. 1. Each piece of checked luggage is attached
with a passive RFID tag recording the luggage information.
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Fig. 1. Illustration of the luggage order tracking

Luggage from multiple counters are gathered to one conveyor
belt and there are tens of belts working in parallel. On each
belt, the system tracks the order of tags along the conveyor
belt and further delivers each piece of luggage at the tail of the
belt to the corresponding vehicle. The luggage order is also
useful for the system manager to double check certain luggage.
Given the crucial role of supply chains to the economy, how to
accurately and continuously track tags’ order on belts serves
as an important component for such mobile RFID systems.
If their relative positions are determined incorrectly, luggage
could be delivered to undesired places. We also note that not
only airports can benefit from such a component. In fact, it
provides a generic service that can be used for a variety of
other applications, e.g., postal service, logistic delivery, food
supply chain, etc.

However, designing such a RFID tracking system entails
a wide range of challenges in practice. The communications
between the reader and tags abide by the EPC Class 1 Gen 2
RFID standard [4]. This standard is based on a slotted ALOHA
scheme to regulate the communications. After the reader
interrogates a set of tags, tags’ responses follow a random
sequence to avoid collisions. As a result, the communications
themselves provide mere information to infer tags’ relative
positions on the belt. One possible solution is utilizing the
temporary correlation among a series of communications, e.g.,
based on the tags’ sequence entering the communication range
of the reader. Yet such a solution may be highly inaccurate.
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Fig. 2. Tracking the order of tags on a conveyor belt

Due to the hardware heterogeneity and the arbitrary way that
luggage is placed on the belt, a tag at the front does not
necessarily response to the reader first. Other tags behind
may have more sensitive circuits or clearer line-of-sight paths
to the reader, leading to the tracking error. Another possible
solution is to adopt exiting localization methods [11], [12].
Those methods, however, normally require complicated system
deployments (e.g., complex reader or tag arrays) and non-
negligible localization inaccuracy (especially in the indoor
environments, like warehouses). Due to the space limitation,
readers may not be deployed following pattern as required by
[11], [12]. In addition, multiple readers can raise the risk to
read tags from other belts. On the other hand, as luggage is
usually densely placed on the conveyor belt, the localization
inaccuracy of even the state-of-the-art methods may cause a
significant error in detecting the correct order of tags.

In this paper, we target at a light weight solution tailored to
the order tracking problem. We observe that communications
between the RFID reader and tags are associated with certain
attributes and there exists a strong temporary correlation
among those attributes. By taking advantage of such a corre-
lation, we can accurately track the order of tags on conveyor
belts in mobile RFID systems. The contributions of this paper
are as follows. First, we observe that multiple attributes of
the communications between the reader and tags solely do
not demonstrate any clear clues. However, by intelligently
combining them together, we can obtain a stable indication
to determine the physical position of each tag with respect
to the reader. We conduct extensive experiments to validate
the effectiveness of such a combination by using an ALR-
9900+ [6] commercial reader and Alien I2 [7] passive tags.
Based on our observation, we then propose the Order Tracking
(OTrack) protocol to accurately and efficiently track tags’
order on conveyor belts. The proposed protocol is easy to be
implemented. To further guarantee the protocol performance,
we mathematically analyze the system parameters of OTrack
and provide it a set of appropriate settings. We implement
OTrack and evaluate its performance through a one-month
experiment conducted at Beijing Capital International Airport.
The experiment results show that our protocol achieves up to
97% tracking accuracy on average and the protocol is robust
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Fig. 3. Temporary correlation of communications

to the variance of the belt’s velocity.
The rest of paper is organized as follows: the problem

specification of this paper is presented in Section II. In
Section III, we introduce our OTrack protocol and analyze
system parameters. The performance evaluation is illustrated in
Section IV. We review related works in Section V and finally
conclude this paper in Section VI.

II. PROBLEM SPECIFICATION

In this section, we present the formal definition of our
luggage order tracking problem.

As shown by Fig. 2, the proposed mobile RFID system
consists of three components: a moving conveyor belt with
a velocity v, a RFID reader fixed over the belt at a height
of h, and a sequence of luggage attached with RFID tags
on the belt. Tags will be accessed multiple times during
the movement along the belt. The only information that we
can use to track the order of tags is the received responses
when tags are within the communication range of the reader.
We know that due to the randomness from tags’ replies,
the communications by themselves do not contain any clue
to infer tags’ relative positions. However, we observe that
the communications are associated with multiple attributes
(e.g., RSSI, RRR, the temporary sequence to receive each
response, etc.). Although in the next section we will show
that attributes solely do not provide strong hints to determine
their orders either, their combination is actually viable enough
for tracking. Thus, the objective to design the OTrack protocol
is to intelligently integrate attributes together for obtaining a
stable indication, and further explore the implication from such
an indication to position each tag on the belts.

III. PROTOCOL DESIGN AND ANALYSIS

In this section, we first present design challenges and our
initial attempts. Then, we elaborate the design of OTrack in
detail based on the insights obtained from our initial method-
ologies. Finally, we analyze the setting of system parameters
in OTrack.

A. Initial attempts and design challenges
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(a) RSSI trend of tag #3
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(b) RSSI trend of tag #5
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(c) RSSI trend of tag #9

Fig. 4. RSSI trends of three tags during the movement

1) Utilizing temporary correlation: Our first attempt is to
utilize the temporary correlation among successive commu-
nications between the reader and tags. More precisely, we
rely on the recorded time stamp for each tag entering the
communication range of the reader to determine their order
on the belt. For the sake of a clear presentation, we denote
such a method as First Come First Sort (FCFS). We conduct
a 24-hour experiment to examine the performance of FCFS.
We equip an ALR-9900+ reader with two Alien ALR-9611-CR
antennas over one conveyor belt. The antenna works within the
890∼930 MHz frequency. Each piece of luggage is attached
with an Alien I2 passive RFID tag and the velocity of the
conveyor belt is 0.4m/s. We virtually embed an axis along the
belt and the original point is the vertically projected position
of the reader to the belt. Tags are shipped from the negative
part to the positive part. To ease the illustration, we place
a pressure sensor under the belt at the position −5m. When
the luggage passes the pressure sensor, the sensor will trigger
the system to record the current time then. With this time
reference, we can determine each position on the belt1, at
which the tag replies to the reader. For example, we suppose
that one piece of luggage passes the pressure sensor when
t = 2s. If the reader later receives a response from its attached
tag when t = 4s, we can estimate that the tag replies at position
−5m+(4s−2s)×0.4m/s =−4.2m.

In Fig. 3, we randomly select 8 consecutive tags to verify
the effectiveness of FCFS and Tag #1 is in the front among
8 tags. In Fig. 3, each star represents the position where a
tag responses to the reader. From the figure, we can see that
different tags reply to the reader within different regions. For
instance, tag #5 is within (−2m,+1.2m) yet tag #6 is within
(−3m,+3m). In this experiment, the distance between tags #5
and #6 is around 0.6m and the FCFS strategy thus causes an
ordering error. To quantify the performance of FCFS, we adopt
FCFS for one hour to determine the order of 3000 pieces of
luggage with the ground truth about their orders. The statistics
show that only 55% of luggage has been ordered correctly.
It indicates that FCFS fails to track the order with adequate

1Note that it only works when the ground truth (tags’ order) is known in
advance. In practice, our protocol does not need pressure sensors since they
cannot be used to determine tags’ positions on belts without the ground truth.

accuracy.

According to our study, we find that the inaccuracy of
FCFS is mainly due to the heterogenous circuit sensitivities
of different tags and environmental dynamics. A tag might
be physically farther away from the reader. However, it could
have a more sensitive circuit or clearer line-of-sight path to the
reader. In such a case, this tag may reply to the reader earlier
than some tags in front of it. Such a challenge prohibits FCFS
from being used directly to distinguish the order of tags.

2) Utilizing the RSSI trend: As a tag moves ahead along the
belt, its physical distance to the reader decreases first and then
increases. Therefore a natural hypothesis is that the detected
RSSI at the reader side should follow the same trend. When
the tag is near the original point on the belt, the detected
RSSI value should be the maximum one. We implement such
a greedy method on our test-bed and name it G-RSSI. We
examine the effectiveness of G-RSSI by using the experiment
of the same setting with Section III-A1.

In Fig. 4, we randomly select 3 tags and depict the RSSI
values of their responses to the reader. From Fig. 4, we can
see that our hypothesis holds only in a statistical sense. If we
take a fine-grained look at the RSSI trace, we will find that the
RSSI trace fluctuates significantly such that there are multiple
peaks with comparable amplitudes. On the other hand, the
trace is not symmetric with reference to the original point due
to the temporary lacking of the line-of-sight path to the reader.
As a result, it is hard to determine which peak is actually the
one when the tag is closest to the original point. The problem
can become even worse as the maximum peak may appear
when the tag is relatively far away from the reader. As the
environmental dynamics disturb the stability of the RSSI trend
along the tags’ movement, G-RSSI fails to directly capture the
order of tags.

3) Utilizing the RRR trend: Although RSSI may fluctuate,
it statistically becomes larger when a tag is getting close to
the reader. It implies that when the tag is close to the reader,
its responses should be with sufficiently high signal strengths
and they are prone to be received by the reader successfully.
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Fig. 5. RRR trends of three tags during the movement

To measure the quality of the response reception2, for any tag
i, we define its Response Reception Ratio (RRR) as follows:

RRRi =
# of responses received from i in d
# of expected responses from i in d

, (1)

where d is a given certain amount of time. According to Eq.
(1), we can refer to the RRR trend of tags to determine their
relative order, and we name this method G-RRR.

We set d to be 0.2s and plot the RRR trends of three tags
#3, #5, and #9 in Fig. 5 and find that when a tag just enters
the reader’s communication range, the RRR is generally low,
but as the tag moves ahead, its RRR rapidly increases and
stabilizes at a certain value. For example, the RRR value of
tag #5 is only 0.1 initially, while its RRR suddenly jumps to
0.6 after it is less than 1.5m away from the original point.
If we further take a fine-grained look at the high RRR value
portion of tag #5, we can observe that within a certain range
near the original point, the variance of RRR is quite small,
and we can observe similar ranges in the RRR traces of other
two tags as well. As a matter of fact, such a region always
exists in the RRR trace of each tag and we call such a stable
region as RRR critical region or critical region for short.
Fig. 5 implies that the RRR trend does not provide high-
granularity location information for tags. It is because the
high RRR values stay for a large portion of time when a tag
moves along the belt. Similar to previous two solutions, G-
RRR cannot directly distinguish the order of tags either.

4) Observed insights: Although the aforementioned at-
tributes cannot be solely used to track the order of tags, we
can still obtain three useful observations as follows:

• The critical region for each tag normally covers the
original position on the belt.

• RSSI normally exhibits a (local) maximum value when
the tag gets close to the original position on the belt.

• Within the critical region for each tag, the trend of the
RSSI changing normally demonstrates a concave shape.

Three observations can be more clearly illustrated by Fig.
6. Those observations imply that after determining the critical

2Since the ALOHA protocol can automatically adjust to the best frame size
to minimize the number of collision slots, in this paper, we focus on the
impact of SNR to the reception of responses merely.
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Fig. 6. Combination of RSSI and RRR

region for a tag, we can track the trend of its RSSI changing
within the critical region. The time stamp when the RSSI peak
appears within the critical region can be used to approximate
the time of that tag passing the original point on the belt, and
we will refer to such a time stamp to determine the relative
positions of each tag. The interpretation of this phenomenon
is that after a tag gets sufficiently close to the reader, the
communication SNR becomes high enough. The critical region
actually indicates that the tag is of good SNR to the reader.
As a consequence, the received signal becomes more steady
and suffers less impact from surrounding noises.

In the next subsection, we will make use of above observa-
tions and design our OTrack protocol.

B. Protocol specification

From Fig. 5, we have found that for different tags, RRR
might be significantly different in their own critical regions.
When a tag has a clear line-to-sight path to the reader, RRR
is more than 90% in the critical region. Nevertheless, RRR
can be only around 60% if the tag is blocked by the luggage
during the movement. Therefore, in practice, we hardly rely
on any pre-defined threshold to detect the critical region.
In OTrack, we propose to examine the consistence of the
RRR values among consecutive periods . When a period is
outside the critical range, its RRR value exhibits significant
difference compared with neighboring periods. On the con-
trary, the RRR values within a critical range are sufficiently



Algorithm 1: criticalRegionSearch(i)
Input : is win size increasing = False;
Output: w∗i containing the critical region of tag i.

1 if is win size increasing = True then
2 Additively prolong the window size of w∗i ;
3 if w∗i fails to pass Lemma 1 then
4 return w∗i ;

5 else
Create a new window wi

t,k and insert it into the
window set Wi;

6 for each window wi
t,k in Wi do

7 if t + |wi
t,k|== k then

8 if wi
t,k passes Lemma 1 then

9 Mark is win size increasing to be True;
10 w∗i ← wi

t,k;
11 Delete all other windows in Wi;
12 else

Delete wi
t,k;

13 return NULL;

close to each other. Therefore, for each tag, we measure the
closeness of RRR values and search for a range containing
most consecutive periods with a minimal variance. Such a
range will be considered as the critical region for the tag
in OTrack. To accurately quantify such closeness, we avoid
using any threshold-based heuristic (e.g., ≤±5% of a baseline
value) to ensure the detection accuracy. Instead, we utilize
the central limit theory to provide a more precise detection.
After determining the critical region, we further explore the
RSSI peak and obtain the time when the peak appears. As the
collected RSSI values are usually mixed with noises, we use
the quadratic fitting technique [5] to minimize the influence
from noises. With the above two steps, we can obtain an
accurate time reference for each tag such that their relative
positions can be ordered on the belt. To formally describe our
protocol, we introduce several notations at first:

• oi
t is a period starting from time t for tag i. |oi

t | indicates
the length of oi

t , in terms of seconds.
• wi

t,k is the k-th window for tag i starting from time t. |wi
t,k|

indicates the length of wi
t,k, in terms of periods.

• p j
wi

t,k
is the RRR in the j-th period of wi

t,k, 1≤ j≤ |wi
t,k|.

• pwi
t,k

is the effective average RRR over wi
t,k.

Given a period, we can calculate RRR for a tag i. If the
starting time of the period is t, we denote such a period as
oi

t . Then by grouping several consecutive periods, we form
a window. As we may create multiple windows for a same
tag in our design, we use wi

t,k to denote the k-th window of
tag i, where t is the starting time of the first period in this
window. Within a window wi

t,k, the reader might receive no
response in certain periods, i.e. RRR is zero in those periods. It

Algorithm 2: The OTrack Protocol
Input : Identified tag set S, initially, S =∅;

Critical region set S∗, initially, S∗ =∅;
Output: The ordered tag sequence;

1 while Broadcasting a beginning round command do
2 if a new tag is detected then
3 Inserting it into S;

4 for each tag i in S do
5 S∗←criticalRegionSearch(i);

6 for each tag i in S∗ do
7 Performing the Quadratic Fitting technique on

the window w∗i of tag i;
8 Obtaining the timestamp t∗i when RSSI peak

appears;
9 Conducting the Insertion Sorting technique to

order the sequence of tags in S∗;
10 Report the ordered tag sequence;

is usually true when the tag is far away from the reader. Then,
we introduce si

t,k for wi
t,k to denote the periods, in which RRR

is greater than zero. Based on those definitions, an instrumental
explanation of our design is as follows. For any window wi

t,k,
we define its effective average RRR as:

pwi
t,k

= ∑ j∈si
t,k

p j
wi

t,k
/|si

t,k|, (2)

where p j
wi

t,k
represents the RRR value within period j of wi

t,k. In

this study, we find that by statistically comparing |wi
t,k|× pwi

t,k

with |si
t,k|, we can conclude whether wi

t,k is completely within
the critical region of tag i. The basic principle is that those
two values should be sufficiently close to each other if wi

t,k is
a subset of a critical region. A more formal specification is
given by the following lemma.

Lemma 1: Let pwi
t,k

be the effective average RRR over

wi
t,k. Then wi

t,k is completely within the critical re-
gion with probability /0(α) if P{||si, j| − |wi

t,k| · pwi
t,k
| ≤

α

√
|wi

t,k| · pwi
t,k
· (1− pwi

t,k
)} holds, where /0(α) is determined

via the Standard Gaussian Distribution Chart [9].
Due to the page limitation, the proof of Lemma 1 is given

in our technical report [10]. In Lemma 1, the parameter α is
crucial to the accuracy of the critical region detection. If α

is large, the inequality in Lemma 1 is easy to hold, while a
window wi

t,k is more likely to be mistaken as a part of the
critical region. On the contrary, if α is too small, it is hard
for the inequality in Lemma 1 to be satisfied. As a direct
consequence, the critical region fails to be properly identified.
Either case degrades the accuracy of OTrack. In Section IV,
we will investigate how to select the parameter α. After α has
been properly chosen, it indicates that wi

t,k is within the critical
region with a high probability when the inequality holds. If
wi

t,k is within the critical region, we can gradually increase
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Fig. 7. Running example of Algorithm 1

its window size such that the final wi
t,k will cover the entire

critical region of tag i. After figuring out the critical region,
we will further apply the quadratic fitting technique to obtain
the time when the RSSI peak appears. The order of tags can
be determined based on such a series of time references. The
detailed critical region searching protocol and the complete
OTrack protocol are given by Algorithm 1 and Algorithm 2,
respectively.

The interpretation to operations of Algorithm 1 is as follows.
When the reader receives a response from a tag i for the first
time at time t, it will create the first window wi

t,1 for this
tag. In the periods afterwards, if RRR is not zero, the reader
will generate a new window wi

t,k. By so doing, we will not
miss the window aligned with the starting point of the critical
region. As time elapses, when the end of a window is reached
(line 7 in Algorithm 1), we examine whether this window is
a part of the critical region. If the inequality in Lemma 1
holds, this window is a part of the critical region. Meanwhile,
it haves the same starting point with the critical region. We
then gradually increase its window size until the inequality
in Lemma 1 becomes invalid and the final window covers
the entire critical region of tag i. The whole process can be
illustrated by an example shown in Fig. 7.

In the example shown in Fig. 7, along the time line, each
white square indicates a period without responses received
from tag i. In contrast, one black square represents that the
reader receives responses in this period and the number below
is the corresponding RRR. When the reader receives responses
from tag i for the first time in period 1, it generates wi

t,1 as
shown by Fig. 7 (a). Later, new windows will be generated if
periods are of the black color (Figs. 7 (b) and (c)). In period
8, we reach the ends of wi

t,1 and wi
t,2. Since the inequality

in Lemma 1 does not hold for those two windows, they are
deleted as shown by Fig. 7 (d). In period 9, as depicted by
Fig. 7 (e), the ends of wi

t,3 and wi
t,4 are reached. Since only

wi
t,4 passes the verification of Lemma 1, wi

t,3 will be deleted
and wi

t,4 will be gradually increased in the following periods.

Note that at this time, we can delete wi
t,5 as well. Although

wi
t,5 is also within the critical region of tag i, its final size will

be shorter than wi
t,4 and we prefer a longer one. Eventually,

the inequality in Lemma 1 becomes invalid for wi
t,4 in period

12 and detected critical region is illustrated in Fig. 7 (f).
After the critical region of tag i is determined by Algorithm

1, the OTrack protocol will sort the order of tag i together
with other tags whose critical regions are already determined
as shown by Algorithm 2, after which OTrack will output the
final order of the passing tags (as well as the luggage they are
attached on).

C. Protocol analysis

1) Window size configuration: In the OTrack protocol,
multiple windows might be constructed for each tag. We find
that their window sizes cannot be determined arbitrarily. If
a window wi

t,k is far away from the original point (i.e., tag
i is far away from the reader), response reception ratios in
this window can exhibit differently. In this case, the window
size should be large such that we can observe sufficient RRR
heterogeneity and confirm the window outside the critical
region. On the other hand, if the tag is close to the reader, the
window size should be relatively small. A large window size,
in such a case, may cover extra portions outside of the critical
region. Either case can cause inaccuracy of the critical region
detection. In OTrack, we adopt a simple method to cope with
such an issue as follows. The window size is set to guarantee
that a clean response from tag i can be received at least once
with a high probability in this window. The rationale behind
is that if tag i is far away from the reader, the RRR values are
low in general and the window size should be large; Otherwise,
the window size should be small. The detailed window size
setting in OTrack is given by Lemma 2.

Lemma 2: Let p j
wi

t,1
be the RRR in the first period of wi

t,k.

A response can be successfully received at least once from
tag i with probability > 1−η if the window size is |wi

t,k| ≥
dln(1/η)/p j

wi
t,1
e.
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Fig. 8. Accuracy Ratio vs. x

Due to the page limitation, the proof of Lemma 2 is given
in our technical report [10]. In OTrack, the default value of
η is set to be 0.05 and Lemma 2 indicates that the window
size dln(1/η)/p j

wi
t,1
e is large enough to guarantee that a clean

response can be received at least once from tag i with a high
probability. By so doing, we guarantee large enough window
sizes for those low RRR regions and small enough window
sizes for those high RRR regions.

2) Quality of the critical region detection: Lemma 1 in the
previous subsection states that the RRR values of different
periods within a critical region should be sufficiently similar
to each other, and we rely on such a conclusion to detect the
critical region for each tag. In practice, however, the RRR
values in a critical region might still be relatively different.
Therefore, we want to examine how likely such a phenomenon
occurs. In Lemma 3, we find that in principle the RRR values
cross a critical region can possibly exhibit a large variance,
the probability of its occurrence , however, is extremely small
and bounded from above.

Lemma 3: We introduce δ to measure the difference be-
tween ||si, j| − |wi

t,k| · pwi
t,k
|. The probability P{||si, j| − |wi

t,k| ·
pwi

t,k
| ≥ δ | wi

t,k is within a critical region} is ≤ 2exp(−δ2/2 ·
|wi

t,k| · pwi
t,k
).

Due to the page limitation, the proof of Lemma 3 is given
in our technical report [10]. Lemma 3 indicates that the RRR
values are not likely to exhibit a large variance. As a result,
the inequality in Lemma 1 can serve as reasonably good
criterion to determine whether a window is completely within
the critical region for OTrack.

IV. EXPERIMENTAL EVALUATION

In the previous section, we have elaborated the design detail
and parameter configuration of OTrack. In this section, we
evaluate its performance through extensive experiments in
practice.
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A. Experiment Setting

We implement OTrack on a workstation equipped with an
Intel Core i7 CPU (2.93GHz) and an 8GB RAM. To evaluate
its performance in practice, we conduct the experiment on a
testing conveyor belt located at Terminal 1 of Beijing Capital
International Airport with 10000 pieces of luggage. Each
luggage is attached with an passive RFID tag. We equip an
ALR-9900+ reader with Alien ALR-9611-CR antennas and
place it over the conveyor belt. The vertical distance between
the belt and the reader is 1.75 meters and the communication
range of the reader is around 7 meters on the belt. All the
antennas work within 890∼930 MHz. To better understand
the protocol performance, we conduct a comparison study
for OTrack with other two practical ones, FCFS and G-
RSSI, in the experiment. FCFS, as we have explained in
Section II, relies on the recorded time stamp (by the reader),
when each tag enters the reader’s communication range, to
determine tags’ relative positions on the belt. G-RSSI is a
greedy algorithm that decides the order of tags based on
the time stamp when each RSSI peak from tags’ responses
appears. To quantify the performance of each protocol, we
mainly refer to the metric Accuracy Ratio defined as follows:

Accuracy Ratio =
# of tags ordered correctly

Total # of tags shipped on the belt
.

B. Experiment Results

1) Investigation on α in Lemma 1: Fig. 8 depicts the
performance of OTrack with various α settings. As mentioned
before, α is crucial to the accuracy of the critical region
detection. If α is large, the inequality in Lemma 1 is easy
to hold, while a window wi

t,k is prone to be mistook as a part
of the critical region. On the contrary, if α is too small, it is
hard for the inequality in Lemma 1 to be satisfied. As a direct
consequence, the critical region fails to be properly identified.
Either case degrades the accuracy of OTrack. To explore an
appropriate setting of the system parameter α, we examine
ten representative values of α in this experiment. As shown
by Fig. 8, the trend of the accuracy ratio exhibits a concave



TABLE I
DIFFERENT LEVELS OF WORKLOADS

Names of settings Distance lengths
Idle 1.0m

Normal 0.5m
Busy 0.3m

Overload 0.2m
Random [0.2m,1.0m]

shape as we vary α. When α is around 2, the curve reaches
the peak value and the corresponding accuracy ratio is as high
as 0.97. The accuracy ratio drops when we either increase or
decrease α. Suggested by Fig. 8, we configure α to be 2 in
the following experiments.

2) Accuracy Ratio vs. period length: According to the
definition, the RRR value is a statistic result calculated within
one period. The length of the period thus needs to be carefully
selected. Otherwise, the obtained RRR value is not stable
enough for the critical region searching. If the period is
too short, the randomness from the environmental dynamics
cannot be completely eliminated. It will cause the inaccuracy
to the critical region detection, and thus deteriorates the overall
performance of OTrack. On the other hand, the length of
the period should not be too large either. Since a window
is composed of consecutive periods and the critical region is
finally indicated by a window in OTrack, the granularity of the
detected critical region will not be high if the period length is
too large, which may also impact the accuracy of our protocol.

In Fig. 9, we vary the period length from 0.05s to 0.5s
to examine its impact. As expected, the accuracy of OTrack
is poor when the period is short. In particular, the accuracy
ratio is only 0.42 when the period length is set to be 0.05s.
As the period length increases, the accuracy ratio of OTrack
increases dramatically. When the period length is 0.2s, the
accuracy ratio is up to 0.98. In Fig. 9, we observe that
if we further increase the period length, OTrack’s accuracy
ratio starts to degrade. On the other hand, as both FCFS
and G-RSSI protocols do not rely on RRR to determine
the order of tags, their performance remains stable cross
different period lengths. However, OTrack with a proper period
length can outperform those two protocols. From statistics, the
performance improvements of OTrack over FCFS and G-RSSI
are 40%+ and 20%+, respectively.

3) Accuracy Ratio vs. luggage distance: In this subsection,
we investigate the performance of three protocols as we vary
the distance between two (successive) pieces of luggage. Since
such a distance implies the luggage density and the shipping
workload on the belt, to facilitate the presentation, we utilize
terms, like idle, busy, overload, etc., to name several typical
distance settings in Table I. From Fig. 10, we can see that when
the luggage load is low, all three protocols can achieve high
accuracy ratios. In particular, the accuracy ratio of OTrack is
close to 1.0. This is because the interference from neighboring
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Fig. 10. Accuracy Ratio vs. Luggage distance

tags is weak when tags are separated adequately apart from
each other. However, with the consideration of the shipping
efficiency in practice, luggage cannot be sparsely placed on
belts. Fig. 10 shows that when luggage load increases, the
performance of all three protocols deteriorate. Compared with
FCFS, both OTrack and G-RSSI only slightly decrease. Yet
FCFS suffers from a significant dive to 0.3 in the overload
scenario. In the same scenario, however, G-RSSI performs
with an accuracy ratio smaller than 0.8 and OTrack even
achieves as high as 0.93 accuracy. Fig. 10 indicates that
our proposed protocol can effectively handle various shipping
workloads in practice.

V. RELATED WORK

We review two categories of research works that are directly
related to our work.

Communication-based localization techniques: A variety of
protocols have been proposed for location using the RFID
technique or the sensing technique. SpotON [11] is a pioneer
RFID localization system, which employs RFID Reader and a
batch of active tags for the indoor localization. Ni. et al. later
propose LANDMARK [12]. It uses two different types of RFID
tags (reference tag and tracking tag) for the object tracking.
TASA [15] relies on RFID tag Arrays for location sensing and
frequent route detection. Liu et.al [13] propose to use RF
tag arrays for activity monitoring, so as to finding frequent
trajectory pattern of human beings. Through our study, we
find that those existing works cannot be applied to address
our problem. On the conveyor belts, luggage is normally
close to each other, e.g. < 0.5m. On the other hand, all
such localization systems introduce high deployment overhead,
which makes it difficult to apply in the applications, such as
airport, postal services, food supply chain, etc.

On the other hand, there also exists plenty of researches
that focus on wireless channel characters for localization.
Represented works include [19]–[23]. In [19], the authors
survey the localization and localizability techniques in wireless
networks and put forward several open questions in this area.
[20] proposes an indoor localization technique by utilizing



user movement pattern and WiFi signal trace matching. Yang
et.al [21] consider the node localizability problems in wireless
sensor netoworks, which plays a key role in understanding
the localization performance for wireless networks. Further,
they leverage user motions to construct the radio map of a
floor plan, which significantly reduce the cost of fingerprinting
database construction [22]. Wu et. al [23] leverages Chan-
nel Impulse Response (CIR) of wireless channel to localize
humans in indoor environment. In our application scenario,
however, due to the device heterogeneity and the environmen-
tal dynamics, the approaches aforementioned would cause a
significant detection error in practice, which hardly satisfies
the application requirements.

Performance optimization for RFID system: Another rele-
vant topic to our work is the performance optimization in
mobile RFID systems. Xie et al. in [3] consider improving the
reading efficiency for RFID tags along a moving conveyor belt.
Yang et al. [18] present an identification-free authentication
protocol for efficiently pinpointing counterfeit tags. Tan [2]
considers the automatic RFID-based detection for missing-
tag events. Qian [14] proposes a scheme that provides low
latency RFID identification and has stable performance for
massive RFID networks. There are also plenty of related
works in Database area. Jeffery [16] proposes an adaptive
RFID middleware to identify tag motions in RFID system.
Tran et al. in [17] address the problem of translating noisy,
incomplete raw streams from mobile RFID readers into clean,
precise event streams with the location information. Tong [24]
consider to extract frequent items from probabilistic data set,
which are useful to solve counting and classification problems
in mobile RFID system. Generally, although those existing
protocols or algorithms may complement our our design to
further improve its efficiency, they are not designed for the
tracking purpose, thus apart from the research focus of this
paper.

VI. CONCLUSION

In this paper, we study how to design a mobile RFID system
to track the order of tags on conveyor belts. Although the
communications between readers and tags cannot be directly
utilized to determine the relative position of tags on belts,
we observe that the combination of multiple attributes of the
communications serves as a viable way to achieve such a
goal. To translate our observation to a practical protocol, we
propose OTrack. OTrack can intelligently integrate attributes
of communications such that the order of tags can be ac-
curately tracked. To guarantee the performance of OTrack,
we further mathematically analyze and properly set system
parameters. Over one-month experiment conducted at Beijing
Capital International Airport demonstrates the accuracy and
effectiveness of our design.
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