978-14799-3360-0/14/$31.00 ©2014 |IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

COLLECTOR: A Secure RFID-Enabled Batch
Recall Protocol

Saiyu Qi*f, Yuanqing ZhengT, Mo Litf, Li Lu* and Yunhao Liu*$
*Department of Computer Science and Engineering, HKUST, Hong Kong
School of Computer Engineering, Nanyang Technological University, Singapore
tSchool of Computer Science and Engineering, University of Electronic Science and Technology, China
§TNLIST, School of Software, Tsinghua University, China

Abstract—Batch recall is a practically important problem for
most industry manufacturers. The batches of products which
contain flawed parts need to be recalled by manufacturers in
time to prevent further economic and health loss. Accurate batch
recall could be a challenging issue as flawed parts may have
already been integrated into a large number of products and
distributed to customers. The recent development of Radio Fre-
quency Identification (RFID) provides us a promising opportunity
to implement batch recall in an accurate and efficient way.
RFID-enabled batch recall provides us the opportunity to further
enhance the security of batch recall operation, allowing us to
achieve recognition of problematic products, privacy preserving
of production pattern, recall authentication and non-repudiation,
etc. In this paper, we thoroughly study the security aspects
and identify the unique requirements in RFID-enabled batch
recall. We propose a practically secure protocol, COLLECTOR,
to enable accurate, secure and efficient RFID batch recall.

Index Terms—RFID; batch recall; security

I. INTRODUCTION

Batch recall is a practically important problem for most
industry manufacturers. The batches of products containing
flawed parts, which may have already been sold to a large
number of customers, need to be recalled in time to prevent
economic and health loss. The selling of problematic products
is considered as major threats to human beings. In medicine and
food industries, incidents of contamination may even cause the
loss of human life. In some countries, the government directly
participates in batch recall and enforces the manufacturers to
recall the problematic products. For example, in the U.S., batch
recall in the food industry is enforced by the Food and Drug
Administration (FDA).

In modern industry process, the product manufacturing often
involves multiple manufacturers and the end-products contain
different parts supplied from different manufacturers. In a gen-
eral manufacturing process, the intermediate batches of product
parts flow a series of intermediate manufacturers and finally
reach an end manufacturer. At each step, an intermediate man-
ufacturer receives intermediate batches from its upstream part-
ners, builds its own parts, generates new intermediate batches
and supplies to downstream partners. The end manufacturer
finally outputs batches of end-products. Fig. 1 illustrates such a
manufacturing process where four intermediate manufacturers:

978-1-4799-3360-0/14/$31.00 ©2014 IEEE

I@l

I <&

| batch 4 | | batch 8 | batch 12

—_——— —) _—e am w | e e -
Fig. 1. The manufacturing process of modern industry.

t1, to, t3, t4 and an end manufacturer 7' participate in the
production chain. Each manufacturer builds its own parts on
received intermediate batches and produces new batches. As
depicted in Fig. 1, t3 and ¢4 receive intermediate batches from
t; and t9, and produce new intermediate batches to 7'. During
the production process, the number of produced intermediate
batches may vary across different manufacturers. The current
manufacturer may use different intermediate batches from
upstream partners to produce one output batch (e.g., 3 uses
batch 1 and batch 2 to batch 5), yet one intermediate batch
may be used to produce multiple output batches (e.g., 1" uses
batch 7 for batch 9, batch 10, batch 11 and batch 12). When
a problematic end-product in the market is detected, it will
be reported to the end manufacturer 7. After re-checking, an
intermediate batch of flawed parts contributed to the end-
product can be traced. The objective of batch recall is to
identify and recall all batches of end-products that contributed
by that particular intermediate batch.

The state-of-the-practice solution to batch recall is usually
to maintain the entire production messages on the production
chain and mark main components of an product with part
numbers. When a recall event happens, the part numbers of
potentially affected components are announced to public and
the customers will have to decompose the end-products for
verification (e.g., Lenovo battery recall [1]), which is neither
accurate nor efficient. An alternative scheme is to recall the

1510

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

entire batches of end-products manufactured during an entire
period (e.g., Toyota automobile recall 2009-2011 [2]), which
however, incurs huge extra overhead and unnecessary loss to
the manufacturers.

The recent advances in Radio Frequency Identification (R-
FID) technology provide promising solutions to save the batch
recall operation from such a miserable situation. Small RFID
tags can be attached to end-products, and the recall messages,
which contain batch-related information, can be thus stored
and later retrieved. With a reported problematic end-product,
the end manufacturer uses its recall message to recover the
production messages of intermediate batches contributed to
the product and traces the problematic intermediate batch.
When the batch is identified, the end manufacturer announces
the batch information corresponding to the identified batch
to public for identification purpose. Apparently, the use of
RFID facilities the trace of problematic intermediate batch and
enables item-level identification. The successful deployment
of RFID technology further enables us to provide substantial
security for the batch recall operation.

In this paper, we systematically study the requirements for
RFID-enabled batch recall. We consider manufacturers and
customers in the scenario where end-products are distributed
from manufacturers to customers and problematic end-products
are recalled from customers to manufacturers. The most im-
portant two functional requirements are traceability—the end
manufacturer could use the recall message of the reported
problematic end-product to recover the production messages
of all the intermediate batches contributed to the product, and
accuracy—the end manufacturer could publish identification
message and rely on customers to check and return problematic
end-products based on the tag carried recall messages. Second-
ly, we concern the privacy of the recall messages in RFID tags,
and try to protect them from being used by malicious entities
to infer the production pattern of the production chain. We also
consider two authentication requirements: recall authentication
and recall non-repudiation between the end manufacturer and
customers. When an end-product is identified as problematic,
the customer can acquire a recall-evidence about the product
for non-repudiation purpose (recall non-repudiation). On the
other hand, the end manufacturer expects faithful receipt of
returned problematic end-product for authentication purpose
(recall authentication). With RFID technique, we want to
design recall messages that can serve as electronic receipts
to provide the two requirements. Finally, we concern several
critical efficiency requirements to design viable RFID batch
recall protocol.

Our contribution can be summarized as follows. First, we
define the system model to formulate the batch recall problem.
According to this model, we identify function requirements,
security requirements and efficiency requirements in RFID-
enabled batch recall. Based on these requirements, we pro-
pose COLLECTOR, a distributed secure batch recall protocol.
Following COLLECTOR, the end manufacturer can recover
correct production messages for any reported problematic end-

product by using its recall message and the customers can
accurately identify the problematic end-products by using
the tag carried recall messages as well as an identification
message published by the end manufacturer. At the same
time, the recall messages are well formed and do not leak
the production pattern of the production chain. COLLECTOR
also guarantees the hardness in recovering witness messages
from the recall messages of good end-products, providing
authentication and non-repudiation. Finally, COLLECTOR is
built on prevalent cryptographic primitives to satisfy the desired
efficiency requirements. We do thorough analysis and show that
the proposed protocol meets all identified requirements.

The rest of this paper is organized as follows. We describe
the batch recall scenario and discuss the requirements of RFID-
enabled batch recall in Section II. In Section III, we briefly
describe the design principle of COLLECTOR. In Section IV,
we present the design details of COLLECTOR. In Section V,
we analyze the requirements achieved by COLLECTOR. In
Section VI, we examine the efficiency of COLLECTOR on
current commodity tags. At last, we review the related works
in Section VII and conclude this paper in Section VIII.

II. PRELIMINARY
A. Batch recall scenario

We consider three types of entities: intermediate manufac-
turer ¢;, end manufacturer 7 and customer C; in our system
model. An end manufacturer 7 relies on a set of intermediate
manufacturers {¢;} to produce end-products and sells them to
customers. A customer C; can be a dealer or an individual.
Dealers directly buy end-products from 7" and sell them to
individuals. All the customers holding the end-products form a
customer set {C;}, which is huge and unpredictable from the
perspective of 7. We divide the batch recall scenario into three
processes: production process, distribution process and recall
process.

Production process: The production process consists of N
sequential production steps: {#;}*—{#;}?—--- —{;}". Each
step j (1<j<N) involves a subset of intermediate manufac-
turers {#;}. In a particular step j, each t;€{t;}7 receives
intermediate batches from one or multiple ¢;€{t;}7 =1, produces
its own intermediate batches and sends them to one or multiple
t;€{t;}7 . Finally, T receives intermediate batches from each
tie{ti}N and produces batches of end-products. As a result,
each end-product is contributed by multiple intermediate batch-
es.

As an example, Fig. 1 shows a production process with two
production steps. Step 1 involves {¢, t2} and step 2 involves
{ts, t4}. After the production, each end-product of batch 12 is
contributed by intermediate batches 1, 2, 3, 4, 6, 7, 8.

Distribution process: In the distribution process, end-
products are sold from the end manufacturer 7" to the customer
set {C;}. Specifically, dealers directly buy end-products from
T and then sell them to individuals. Note that a C; may not
buy one or multiple complete batches of end-products. Instead,
the purchased end-products may come across multiple batches.

1511

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Recall process: Later, if an end-product is found to be
problematic by a C;, the C; will report this event to T and
return the end-product. 7" then cooperates with the intermediate
manufacturer set {¢;} to trace the problematic source.

If an intermediate batch supplied by a ¢; is located to
be problematic, we say a recall event happens. 1" will then
collect all the problematic end-products contributed by this
intermediate batch from {C;}.

B. Integration with RFID system

A typical RFID system consists of a reader and a set of
tags. A tag is a tiny transmitter with constrained storage and
computation power. A tag can be attached to an object and
store some data which describes the object. On the other hand,
an RFID reader is used to read and write tag carried data
via wireless channels. Compared with tags, readers can be
equipped with more storage and computation power.

In RFID-enabled batch recall scenario, each end-product
is attached with a tag for identification and a customer C;
should be able to read/write tag carried data. For a dealer, we
assume that it is equipped with readers to read the attached
tags. For an individual, we assume that it can approach the
dealer from which it buys the end-products and requests the
dealer to read/write the attached tags. We envision that in
the near future, personal devices such as smart phones could
be equipped with scanning capability so that individuals can
complete the read/write tasks by themselves.

C. Requirement analysis

The practical deployment of RFID system is subject to
various requirements. To accurately identify problematic end-
products, certain recall messages should be stored in tags for
identification. For example, a straightforward approach is to
assign a batch number for each intermediate batch and store
proper batch number sets into tags. Later, T publishes the batch
number of the problematic intermediate batch for customers
to identify. Such a solution, however, does not provide any
security protection. For example, a business competitor can
easily scan the tag carried batch numbers to infer the production
pattern of the production chain. In specific, the competitor can
immediately infer (1) how many intermediate batches are used
to produce an end-product (by counting the number of a batch
number set), (2) if two end-products are contributed by same
intermediate batch(es) (by comparing two batch number sets).
We define the above two types of information as non-trivial
information of production pattern.

Instead, we aim to provide security protections to enforce
the correct execution of batch recall operation while achieving
function requirements and efficiency requirements. We list all
the desired requirements as follows.

1) Function requirements: We identify two functional ad-
vantages that an RFID-enabled batch recall protocol could
provide.

e Traceability: When receiving a reported problematic end-
product, 7" should be able to use its recall message to recover

the production messages of the intermediate batches contribut-
ed to the end-product, which enables 7" to trace the problematic
intermediate batch. Traceability is required by 7.

In COLLECTOR, each intermediate manufacturer 7,€{t;}

creates production records to store the production messages of
its supplied intermediate batches. Also, 1" creates batch records
to store the state of its batches of end-products and recall
messages for each end-product. The production records, batch
records and recall messages are correlated so that 7' could link
each recall message to a proper set of production records.
e Accuracy: When a recall event happens, 7" should be able
to publish an identification message so that all the problematic
end-products can be precisely identified by the customer set
{C;}. Accuracy is required by T and {C;}.

COLLECTOR leverages the correlation between production
records, batch records and recall messages for T to generate a
proper identification message.

2) Security requirements: An RFID-enabled batch recall
protocol needs to satisfy a number of security requirements
to prevent potential malicious behaviors.

e Production privacy: Recall messages of end-products should
not leak non-trivial information about the production pattern
of the production chain. Production privacy is required by 7'

Different with the straightforward approach, in COLLEC-

TOR, T generates recall messages without the knowledge of
batch numbers of intermediate batches to prevent the leakage
of production pattern.
e Recall authentication: When 7' receives an end-product
from a C;, T should be able to authenticate that this end-
product is truly problematic. Recall authentication is required
by T.

In COLLECTOR, T encrypts a unique witness message

into each recall message. COLLECTOR ensures that a C;
can only recover witness messages from the recall messages
of problematic end-products. Therefore, T' requires a C; to
provide a recovered witness message for each returned end-
product for authentication.
e Recall non-repudiation: When a C; identifies an end-
product as problematic, it should be able to acquire a recall-
evidence about the product so that 7' cannot refuse to recall it.
Recall non-repudiation is required by {C;}.

In COLLECTOR, as a C; can only recover a witness mes-
sage from the recall message of an problematic end-product,
the C; can record the recovered witness message and the recall
message as a recall-evidence. A key point here is that the C;
must convince an authority that the recall-evidence is acquired
after identifying a problematic end-product, but not faked by
itself. COLLECTOR resorts to signature scheme to solve this
problem.

3) Efficiency requirements: A viable RFID-enabled batch
recall protocol should be highly efficient. We identify several
critical efficiency requirements toward this goal.

o Key management: The design of an RFID-enabled batch
recall protocol should not rely on the customer set {C,}
to securely store secret keys. Considering the varying skills,

1512

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

enck(): encryption <>gg: Signing

witness message:
(my,)
recall message:
(idx, <enck(my, rn)>sig)

identification message:
(<mt>sig; {(IdX, <K>sig)})

Fig. 2. The format of the three types of messages.

interests and cultures of a huge quantity of customers, their
stored keys may be easily leaked or compromised.

COLLECTOR adopts a centralized key managemen-

t manner—only 7 needs to securely store secret keys, and thus
simplifies the complexity and enhances security.
o Computation: The computation overhead of an RFID-
enabled batch recall protocol should be lightweight to support
large scale recall operation involving a huge quantity of cus-
tomers.

COLLECTOR builds on two prevalent cryptographic prim-
itives: symmetric encryption scheme and signature scheme,
which can be easily deployed and fast executed. Moreover,
COLLECTOR uses a type of message called batch index,
which enables a C; to fast filter good end-products with
no computation overhead. This means that COLLECTOR is
especially efficient when only a small fraction of end-products
are problematic.

o Tag overhead: The usage of RFID technique raises efficiency
concern about RFID tags. A typical tag has a small memory
space and supports extremely limited computational operations.

In COLLECTOR, during the life cycle of an end-product, the
attached tag only needs to store a recall message and a witness
message (optional). Both types of messages have constant size
and suit the storage constraint (512 bits) of current commercial
RFID tags.

III. PROTOCOL OVERVIEW

In this section, we describe the design principle of COL-
LECTOR.

A. Principle of COLLECTOR

To simplify the description, we use a notion <m>gjg to
denote a signed message m generated by T'. Therefore, <m>gq
consists of a message m and a signature signed on m.

In COLLECTOR, each intermediate manufacturer #;€{¢;}
creates production records for its supplied intermediate batches.
A production record contains a production message about the
corresponding batch and is indexed by a batch number b;.

T cooperates with {¢;} to track which intermediate batches
are contributed to its batches of end-products and creates batch
records for its batches. A batch record corresponds to a batch
of end-products and contains a batch index idx, a secret key K
and a batch number set {b,}. T also generates witness messages

and recall messages for each end-product of the corresponding
batch. A witness message (m, r;) contains a fixed recall token
my and a random number 7;. A recall message (idx, <CT>gjg)
contains the batch index idx and a signed ciphertext <CT >jg,
where CT encrypts a witness message by using K. T then loads
the recall messages into the tags of the end-products. As recall
messages contain signatures of 7, they can be used as buying-
evidences for customers to store.

Upon receiving a reported problematic end-product, 7' links
its recall message to a batch record through batch index, and
links the batch record to a set of production records through
batch numbers. With the linked production records, 7 then
cooperates with {t;} to trace the number of the problematic
intermediate batch.

With the traced batch number, T initializes an identification
message as (<m;>gig). Recall that a batch record contains a
batch index idx, a secret key K and a batch number set {b;}.
If {b,;} contains the problematic batch number, 7 adds the pair
(idx, <K >gjg) into the identification message. After checking
each batch record, T publishes the identification message.

On the other hand, a customer C; identifies an end-product
as problematic/good by deciding if its recall message (idx,
<CT>gjg) can be linked to a pair (idx, <K>gg) of the
identification message through idx. If linked (problematic), the
C; decrypts <CT>gjg to a witness message (1, ;) by using
<K>gig of the linked pair. The C; then loads (my, ;) into
the attached tag before returning the end-product. If not linked
(good), the C; cannot do so. Moreover, as each witness message
contains a random number, the C; cannot guess the encrypted
witness message. Therefore, if a C; can provide a correct
witness message for a returned end-product, T convinces that
the product is truly problematic.

When a C; identifies an end-product as problematic, the
C; acquires a signed tuple (<CT>gg, <K>gig, <my>sig)
satisfying decryption relation. <m;>gg is fetched from the
identification message and is used to show that <CT>gg can
indeed be decrypted by <K>gg. The C; records this tuple
as a recall-evidence. Note that the tuple needs to be signed to
convince an authority that the tuple is acquired after identifying
a problematic end-product, but not faked by the C;.

We summarize the format of witness message, recall mes-
sage and identification message in Fig. 2.

B. An illustrative example

We use an example to illustrate the basic work flow of
COLLECTOR. As shown in Fig. 3(a), when receiving a
reported problematic end-product, the end manufacturer traces
the batch number of the problematic intermediate batch. It then
finds that a batch record contains the problematic number. The
end manufacturer generates an identification message (1., (idx,
<K >sjg)) based on the affected batch record and publishes the
identification message. As shown in Fig. 3(b), each customer
has a good end-product and a problematic end-product. The
customers directly filter the good ones as their recall messages
cannot be linked to (idx, <K >gg) through idx. The customers

1513

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

e e

end manufacturer

c

1. A problematic

return this product at customer 1

2. Fix problematic batch
number and generate

identification message .
9 (<M, (idx, <K>s5))

X pe end-products
S,) DB,

4. Verify the returned
problematic end-
products

customer 1 customer 2

end-product is found

g 3. Identify problematic

¥

e
ldx

(idx*, <CT*>gg)—————m(idix*, <CT">4)
! ; X

customer 1
(

¥

<K>gg

idx, <CT>gg) ———————m=(my, r1)———» recall-

evidence

¥

<K>sig recall-
;) by :
(idx, <CT>4g) (m, 1) ® ovidence

Pt
idx

(idx", <CT*>gjg)——————m(idx", <CT*>gq)

e

customer 2

4

(a) Communication between end manufacturer
and customers

Fig. 3.

also recover witness massages from the recall messages of the
problematic ones by using <K >gq4. After that, the customers
acquire recall-evidences for the problematic ones. Finally, as
shown in Fig. 3(a), the customers return their problematic end-
products as well as the recovered witness messages for the end
manufacturer to authenticate.

IV. PROTOCOL DESIGN

In this section, we present the design of COLLECTOR.
COLLECTOR consists of four phases: production phase, dis-
tribution phase, tracking phase and recall phase.

Initially, 7' generates a signing-verification key pair of a
signature scheme. 7T applies a certificate for the verifica-
tion key from a key authority and publishes the verification
key/certificate pair. As a result, anyone can verify the validity
of the verification key and use the key to verify the validity of
signed messages generated by 7.

A. Production phase

The production phase involves the production process
{t:}'—={t;}>—--- —{t;}"V. During the process, T' cooperates
with the intermediate manufacturer set {t;} to track batch
numbers of intermediate batches, creates batch records for its
batches of end-products and generates recall messages for its
end-products.

P1. During the production process, each intermediate man-
ufacturer #,€{t;} creates a production record for each of its
supplied intermediate batches in its database. A production
record (b;, P My,) contains a batch number b; and a production
message P My, about the corresponding batch.

The end manufacturer 7' cooperates with the intermediate
manufacturer set {¢;} to track which intermediate batches are
contributed to its batches of end-products. Through coopera-
tion, T collects a batch number set for each of its batches.

(b) Identification of problematic end-products
at customer side

Overview of COLLECTOR.

A batch number set contains the batch numbers of all the
intermediate batches contributed to the corresponding batch.

After the production process, T attaches its batches of end-
products with tags in item-level.

P2. T generates a recall message for each of its end-products
and loads the message into the attached tag.

For each batch of end-products with batch number set {b,},
T chooses a batch index idx and a secret key K of a symmetric
encryption scheme. For each end-product in the batch, T
encrypts a witness message (m;, r;) into a symmetric-ciphertext
CT by using K, where r; is a random number. T then generates
a recall message:

(idx, <CT>gjg)

and loads the recall message into the attached tag. After
processing each end-product of the batch, T creates a batch
record:

(idx, K, {b;}, {(m¢, r)})

for the batch in its database. {(mq, r)} is the set of witness
messages generated for all the end-products of the batch.

B. Distribution phase

In this phase, 7" distributes end-products to the customer set
{C;}. For the reason of brevity and clarity, we only focus on
the distribution from 7" to dealers. The further distribution from
dealers to individuals is similar and is ignored.

In a trading transaction between 7" and a customer C;, T
directly transfers the required end-products to the C;. For each
received end-product, the C; reads the recall message from the
attached tag and verifies if its contained symmetric-ciphertext
CT is correctly signed by T. If yes, the C; accepts the end-
product. As the contained symmetric-ciphertext is correctly
signed, the recall message serves as a buying-evidence of the
end-product and the C; can choose to locally store the recall

1514

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

message. The transaction ends after the C; has accepted all the
received end-products.

C. Tracking phase

Tracking phase is event-driven: when receiving a reported
problematic end-product from a customer C;, T cooperates
with the intermediate manufacturer set {¢;} to trace the batch
number of the problematic intermediate batch contributed to
this product.

T1. T reads the recall message from the tag of the reported
problematic end-product. T then uses the batch index idx of the
recall message to search a batch record (idx, K, {b;}, {(m,
r1)}) in its database with the same idx. If such a record is
found, T fetches the batch number set {b,} of the record.

T2. T recovers the production messages of intermediate
batches corresponding to {b;}. Recall that these messages are
stored in the databases of the intermediate manufacturer set
{t:} (in the form of production record (b;, PMj,)). As a result,
T can easily fetch these production messages by using {b;} as
indexes to query the databases of {¢;}.

T3. After querying, 7 knows which intermediate batches
are contributed to the problematic end-product as well as their
production messages. T then cooperates with {t;} to trace the
batch number of the problematic intermediate batch.

D. Recall phase

With the traced batch number of the problematic inter-
mediate batch, 7 then publishes an identification message
for the customer set {C;} to identify and return problematic
end-products. During this process, each C; acquires a recall-
evidence for each of its problematic end-products and T ver-
ifies if each returned end-product is truly problematic before
accepting it.

R1. T initializes an identification message as (<my>sig).
Suppose the traced problematic batch number is b7, for each
of its batch records (idx, K, {b;}, {(mq, 7)}), T checks if bj
is contained in the batch number set {b;}. If yes, T fetches
the pair (idx, K), signs K and adds (idx, <K>gg) into the
identification message. After checking all the batch records, T
publishes the identification message:

(<my>sig, {(idx, <K>gig)})

R2. When a customer C; discovers the identification mes-
sage, the C; starts to identify if some of its end-products are
problematic. For each end-product, the C; reads the recall
message (idx, <CT>ggy) from the attached tag and uses the
recall message as well as the identification message to identify
if the product is problematic. The detail is summarized in
Algorithm 1. If Algorithm 1 outputs (<K>gjg, <n¢>sig, (m},
7)), the C; verifies if <K>gg and <m;>jg are correctly signed
by T. If yes, the C; identifies the end-product as problematic
and creates a recall-evidence:

(<CT>sig, <K>sig, <my>sig)

for the end-product. The C; also writes the witness message
(mj}, 7)) into the attached tag and returns the end-product to 7.

Algorithm 1 Identification of problematic end-product
Input:
recall message: (idx, <CT>gig)
identification message: (<m;>gig, {(idx, <K>sig)})
Procedure:
1: use idx € recall message to search a pair (idx, <K>gjg) €
identification message with the same idx;
. if a pair (idx, <K>gjg) is searched then
: fetch <K>gjg from (idx, <K>gig);

2
3
4. fetch <CT>gg from recall message;

5. fetch <m;>gg from identification message;
6: decrypt CT to (mj, r]) by using K;

7 if m, = m,; then

8 output (<K>gg, <my>sig, (mj}, 77));

9 else output ’fault’;

0: else output *good’.

—_

R3. For each returned end-product, 7' reads the witness
message (my, ;) from the attached tag and checks if (mj}, r})
is contained in the witness message set {(m;, r;)} of a certain
batch record. If yes, 1T" accepts the end-product as problematic
and removes (m;, r;) from the witness message set.

V. REQUIREMENT ANALYSIS

In this section, we show that COLLECTOR achieves the
function requirements, security requirements and efficiency
requirements posed by RFID-enabled batch recall.

A. Function requirement analysis

Traceability: When receiving a reported problematic end-
product, 7 should be able to recover the production messages
of the intermediate batches contributed to the product. In
COLLECTOR, T could link each end-product to the corre-
sponding production messages as follows. Given an arbitrary
end-product, T reads its recall message from the attached tag.
T then uses the batch index idx of the recall message to search
a batch record in its database indexed by the same idx. The
batch number set {b;} of the searched batch record contains
the batch numbers of all the intermediate batches contributed
to the product. T finally uses these batch numbers to search
production records in the databases of the intermediate man-
ufacturer set {t;} indexed by the same batch numbers. The
searched production records contain the production messages
of all the intermediate batches contributed to the product.

Accuracy: With a traced problematic intermediate batch, T
should be able to enable {C;} to identify all the end-products
contributed by the batch. In COLLECTOR, T could link each
intermediate batch with all the end-products contributed by
the batch as follows. Given the batch number of an arbitrary
intermediate batch, T searches the batch records whose batch
number sets contain the number in its database. The searched
batch records correspond to all the batches of end-products con-
tributed by the intermediate batch. T then publishes the batch
indexes of these batch records. By comparing the published

1515

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

batch indexes with the tag carried recall messages, {C;} could
identify the corresponding batches of end-products.

B. Security requirement analysis

Production privacy: Recall in section II.C, we discuss a
straightforward approach to generate recall messages, which
leaks two types of production information: (1) how many
intermediate batches are used to produce an end-product (by
counting the number of a batch number set), (2) if two
end-products are contributed by same intermediate batch(es)
(by comparing two batch number sets). In COLLECTOR,
instead, T generates recall messages without the knowledge of
batch number sets. In specific, considering the generation of a
recall message: (idx, <CT>gjg). T encrypts a witness message
(mq, 77), which is independent of batch number sets, to the
symmetric-ciphertext CT by using a randomly generated secret
key K. T then signs CT by using its signing key. Finally, T
appends a self-selected batch index idx to <CT>sjg. During the
above generation process, T does not use batch number sets as
input. A recall message thus does not reveal any information
which can be inferred from batch number sets, such as the
above two types of production information.

Recall authentication: In the recall phase of COLLECTOR,
the secret keys of identification message only enable a C;
to decrypt the recall messages of problematic end-products
to get witness messages. Each witness message convinces T
that an end-product is truly problematic. As a result, to return
a good end-product to pass 7’s authentication, a malicious
C; should be able to get a witness message for the product.
In COLLECTOR, each witness message (m;, r;) contains a
unique random number 7; and is encrypted (through symmetric
encryption) into a recall message. Due to the confidentiality
of symmetric encryption scheme, the C; cannot decrypt the
recall message of the product without the secret key. Also due
to the randomness of r;, the C; cannot guess the encrypted
witness message or create a witness message by just coping
the recovered witness message of a problematic end-product.

Recall non-repudiation: In the recall phase of COLLEC-
TOR, If a C; identifies an end-product as problematic, the
C; can use its recall message and the identification mes-
sage to create a recall-evidence for the end-product. Later,
if T refuses to recall this end-product, the C; can reveal
the recall-evidence to an authority for judgement. With the
recall-evidence (<CT>gjg, <K>sig, <m;>sig), the authority
convinces that the evidence truly corresponds to a problematic
end-product through following steps:

— verify if <CT>gjq is correctly signed by T

— verify if <K>gjgq and <my;>gjg are correctly signed by T

— decrypt CT to (mj, ;) by using K and decide if m} = m,

Let us analyze what the authority can convince from the
above three steps. In the first step, the authority concludes that
the ciphertext CT is generated by T based on the unforgeability
of signature scheme. This convinces the authority that the C;
truly buys an end-product from 7. In the second step, the
authority concludes that the recall token m; and the secret key

TABLE I
COMPUTATION OVERHEAD
T {Ci}
. kg batch-level
Production phase enc+sign item-level \
Distribution phase \ veri item-level

Tracking phase

good:

sign batch-level prob: dec+2veri item-level

Recall phase

K are generated by T based on the unforgeability of signature
scheme. This convinces the authority that a recall event truly
happens. Finally, in the third step, the authority concludes that
the witness message (m;, ;) can be decrypted from CT by
using K. In COLLECTOR, the successful decryption indicates
that an end-product is identified as problematic. However, the
C; can easily fake a tuple (m}, CT’, K’) satisfying decryption
relation. As the authority has verified that the tuple (m;, CT,
K) is generated by T, this possibility is precluded. As a result,
the authority convinces that the C; truly buys an end-product
from T which is identified as problematic in the recall event.

C. Efficiency requirement analysis

Key management: We analyze the key management over-
head in the four phases of COLLECTOR. In the first two
phases, namely production phase and distribution phase, the
end manufacturer 7" needs to securely store a signing key and
a secret key K of a symmetric encryption scheme for each of
its batches (contained in the batch records). On the other hand,
the customer set {C;} do not need to securely store any keys
at all. When a recall event happens, the subsequent two phases,
namely tracking phase and recall phase, are conducted. In these
two phases, both 7" and {C;} do not need to generate any new
keys.

Computation: We analyze the computation overhead of
COLLECTOR in two aspects: required cryptographic algo-
rithms and computation delay raised by these algorithms.

COLLECTOR builds on two prevalent cryptographic prim-
itives: symmetric encryption scheme and signature scheme.
Therefore, five types of cryptographic algorithms: key
generation-encryption-decryption algorithms of the symmetric
encryption scheme and signing-verification algorithms of the
signature scheme are required in the four phases of COLLEC-
TOR. We use kg, enc, dec, sign, veri to denote the computation
delay of the five types of algorithms respectively.

In the production phase, the end manufacturer 7" needs to
choose a secret key for each of its batches of end-products,
incurring kg delay in batch-level. T also needs to generate a
recall message for each of its end-products, incurring enc+sign
delay in item-level. On the other hand, the customer set {C;}
do not need to execute any cryptographic algorithms, incurring
no computation delay.

In the distribution phase, T directly distributes end-products
to {C;}, and thus does not need to execute any cryptographic
algorithms. On the other hand, the customer set {C;} need to

1516

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

verify if the recall messages of their received end-products are
correctly signed by 7, incurring veri delay in item-level.

In the tracking phase, a C; just returns a problematic end-
product to 7', incurring no computation delay. On the other
hand, T reads the recall message of the reported problematic
end-product from the attached tag and uses the batch index
of the recall message to search a proper batch record in its
database, also incurring no computation delay.

In the recall phase, T needs to sign the secret keys of its
batch records whose batch number sets contain the problematic
batch number to generate identification message, incurring sign
delay in batch-level. On the other hand, each C;€{C;} needs
to identify if it has problematic end-products. We classify
the end-products of a C; as good and problematic. For the
good end-products, the C; identifies them through batch index
comparison, incurring no computation delay. For the problem-
atic end-products, the C; identifies them through batch index
comparison and creates a recall-evidence for each of them,
incurring dec+2veri delay in item-level.

Table I summarizes the computation overhead of COLLEC-
TOR. From the above analysis, it can be seen that COL-
LECTOR works in a fine-grained manner in the recall phase:
{C;} process good end-products with no computation delay.
This means that COLLECTOR is especially efficient when a
small fraction of end-products are problematic and need to be
recalled.

Tag overhead: In COLLECTOR, RFID tags are not required
to implement any cryptographic algorithms. Instead, a tag only
needs to support basic read and write operations. We then
analyze storage overhead of RFID tags in the four phases of
COLLECTOR. The production phase involves the production
of end-products and tags are not used. In the distribution phase,
tags are attached to end-products in item level with each tag
storing a recall message. A recall message consists of a batch
index idx, a symmetric-ciphertext CT and a signature signed
on CT. In the tracking phase, no new messages are added into
the tags. In the recall phase, when an end-product is identified
as problematic, its attached tag is re-written with a witness
message, which consists of a recall token m; and a random
number r;. In conclusion, tag storage overhead is constant in
the four phases of COLLECTOR.

To suit the storage constraint (512 bits) of commodity C1G2
RFID tags, we can adopt compact 128-bit witness messages
and 512-bit recall messages. A 128-bit witness message con-
sists of a 64-bit recall token and a 64-bit random number.
A 512-bit recall message consists of a 32-bit batch index, a
128-bit ciphertext and a 320-bit signature. We use 32-bit batch
index to support up to 232 batches of end-products. We select
AES as the symmetric encryption scheme to encrypt 128-bit
witness messages, which generates 128-bit ciphertexts. Finally,
we select DSA as the signature scheme to generate 320-bit
signatures (in 80-bit security).

VI. IMPLEMENTATION ON COMMODITY C1G2 RFID TAGS

We implement COLLECTOR with commodity C1G2 RFID
tags. Since recall messages are longer than witness messages,

ALN-9640 mmmm

500 — AD-224 1 4

400 -

300 —

200

100 —

Comm Overhead (ms)

: NN

Write Read

Recall message

Fig. 4. Communication time of recall message transfer.

we only focus on recall messages.

The C1G2 standard specifies a set of communication prim-
itives between RFID reader and RFID tags. An RFID reader
can write/read recall message to/from an RFID tag following
C1G2 standard. In the message transfer procedure, the reader
may write recall messages into RFID tags using the Write
command which allows the reader to write a 16-bit data block
per operation. To transfer more data, the reader needs to write
multiple data blocks. If the recall message is successfully saved
into the tag memory, the tag will notify the reader by sending
an acknowledgement. The Read command on the other hand
supports bulk data collection. Current commodity RFID reader
supports up to 512-bit data collection per Read operation.

We use the Alien ALR 9900+ commodity RFID reader to
write and read recall messages to commodity passive RFID
tags. We adopt the default setting of RFID reader with trans-
mission power of 30dBm. The reader is equipped with one
ALR-8696-C directional antenna. The data transfer program
is developed based on the Alien RFID reader SDK codes.
Our implementation only requires the C1G2 routine operations
such as writing and reading data from tags. Thus, we believe
COLLECTOR can also be implemented on other commodity
RFID systems.

Current commodity RFID tags have different sizes of non-
volatile memory which can be used to store recall message.
In particular, there are 4 different types of memory banks in
commodity RFID tags, i.e., Reserved, EPC, TID, and User.
In our implementation, we store recall message in the user
memory bank. We test with two different types of passive
tags from two different manufacturers — ALN-9640 and AD-
224 tags both with 512-bit user memory. As COLLECTOR
uses compact 512-bit recall message, the user memory can
comfortably accommodate recall message. COLLECTOR does
not require any modifications to the commodity passive RFID
tags or implement additional cryptographic functionality on
tags.

Next, we focus on the communication overhead between the
reader and the tags in message transfer. As COLLECTOR uses
the C1G2 Write/Read primitives, the performance is largely
dictated by the performance of commodity systems. Fig. 4
shows the communication overhead involved in the 512-bit

1517

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

recall message transfer. According to the experiment results,
it requires more time to write messages into tags because as
mentioned the Write command only allows the reader to write
a 16-bit data block per Write operation. To transfer 512-bit
data, the reader needs to first divide the recall message into
several blocks and transfer them separately which takes longer
time. In comparison, the Read operation takes less time since it
only requires one Read operation to collect the whole 512-bit
recall message.

VII. RELATED WORK

Tag authentication schemes [3], [4], [5], [6], [7], [8], [9], [10]
are proposed to provide authentication for RFID system. Weis
et al. [3] propose a provable secure authentication protocol,
Hash Lock, to authenticate tags with privacy guarantee. The
drawback of Hash Lock is that its key search complexity is
proportional to the number of tags in the system. To solve
this problem, Tree based schemes [4]-[6] have been proposed,
which improve the key search efficiency from linear complexity
to logarithmic complexity. Yao et al. [7] investigate the com-
mon key effect which is a privacy concern in RFID system
and present a random walk based authentication protocol to
enhance the privacy and security. Recently, several works [9],
[10] investigate the authentication of batches of tags with high
efficiency performance. For instance, Yang et al. [10] propose a
batch authentication protocol to detect fake tags in tag batches.
Their technique relies on the distribution of tag replies to fast
detect fake tags with probabilistic guarantee.

Secure schemes in RFID-enabled supply chains [11], [12],
[13] investigate the secure issues when a large quantity of
tags flow through multiple parties in a supply chain. Li et
al. [11] identify the security requirements of a general RFID-
enabled supply chain and propose an authentication protocol
to satisfy these requirements. Juels et al. [12] consider the key
distribution problem on an unidirectional channel through an
RFID-enabled supply chain and present two unidirectional key
distribution schemes with different security guarantees. Blass
et al. [13] propose a secure framework, tracker, to solve the
path authentication problem in RFID-enabled supply chain.
The goal of tracker is to authenticate whether a tag has flowed
through a valid processing path.

The closest work with ours is [14]. In [14], the authors
propose a solution to protect industrial privacy in RFID-
enabled batch recall. Comparing with our work, their solution
considers a totally different threat model where intermediate
manufacturers do not trust each other in the production process.
Also, they do not consider several requirements such as recall
authentication and recall non-repudiation which are desired by
us.

Finally, to make our protocol design manageable, we do not
consider attacks from network, such as internet worm attack
[15], [16]. An open question is if and how network attacks may
affect the functionality of COLLECTOR. We also ignore the
collision problem of RFID system as it has been investigated
by many prior work. For instance, Yang et al. [17] proposed an

anti-collision protocol to improve the identification efficiency
for densely deployed RFID systems.

VIII. CONCLUSION

RFID-enabled batch recall allows us to identify problematic
products and enables efficient recall operations. Direct batch
recall solutions however usually save the sensitive production
information in RFID tags which necessitates a careful design
to provide security. In this paper, we thoroughly analyze the
requirements of RFID-enabled batch recall including function
requirements, security requirements and efficiency require-
ments. We then propose a secure RFID-enabled batch recall
protocol, called COLLECTOR to fulfill these requirements. We
conduct comprehensive analysis and prove the correctness and
efficiency of the proposed protocol.

IX. ACKNOWLEDGEMENT

We acknowledge the support from Singapore MOE AcRF
Tier 1 grant MOE2013-T1-002-005, NTU Nanyang Assistant
Professorship (NAP) grant M4080738.020 and National Natu-
ral Science Foundation of China (NSFC) (No. 60933003).

REFERENCES

[1] http://www.notebookreview.com/default.asp?newsID=3212&article=
Lenovo+ThinkPad+Battery+Recall.

[2] http://en.wikipedia.org/wiki/Toyota_vehicle_recalls.

[3] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, “Security and
privacy aspects of low-cost radio frequency identification systems,” in
SPC, 2003.

[4] L. Lu, J. Han, R. Xiao, and Y. Liu, “Action: Breaking the privacy barrier
for rfid systems,” in INFOCOM. 1EEE, 2009.

[5] L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni, “Dynamic key-updating:
Privacy-preserving authentication for rfid systems,” in PerCom. IEEE,
2007.

[6] T. Dimitriou, “A secure and efficient rfid protocol that could make big
brother (partially) obsolete,” in PerCom. IEEE, 2006.

[71 Q. Yao, Y. Qi, J. Han, X. Li, and Y. Liu, “Randomizing rfid private
authentication,” in PerCom. IEEE, 2009.

[8] T. Dimitriou, “A secure and efficient rfid protocol that could make big
brother (partially) obsolete,” in PerCom. 1EEE, 2006.

[91 W. Gong, K. Liu, X. Miao, Q. Ma, Z. Yang, and Y. Liu, “Informative

counting: fine-grained batch authentication for large-scale rfid systems,”

in MobiHoc. ACM, 2013.

L. Yang, J. Han, Y. Qi, and Y. Liu, “Identification-free batch authentica-

tion for rfid tags,” in ICNP. 1EEE, 2010.

Y. Li and X. Ding, “Protecting rfid communications in supply chains,”

in ASIACCS. ACM, 2007.

A. Juels, R. Pappu, and B. Parno, “Unidirectional key distribution across

time and space with applications to rfid security,” in USENIX Security,

2008.

E. Blass, K. Elkhiyaoui, and R. Molva, “Tracker: Security and privacy

for rfid-based supply chains,” in NDSS, 2011.

L. W. F. Chaves and F. Kerschbaum, “Industrial privacy in rfid-based

batch recalls,” in Enterprise Distributed Object Computing Conference

Workshops, 2008.

Y. Yao, X. Xie, H. Guo, G. Yu, F. Gao, and X. Tong, “Hopf bifurcation

in an internet worm propagation model with time delay in quarantine,”

Elsevier Journal of Mathematical and Computer Modelling, vol. 57, no.

2635-2646, June 2013.

Y. Yao, N. Zhang, W. Xiang, G. Yu, and F. Gao, “Modeling and analysis

of bifurcation in a delayed worm propagation model,” Journal of Applied

Mathematics, vol. 2013, 2013.

L. Yang, Y. Qi, J. Han, W. Cheng, and Y. Liu, “Shelving interference

and joint identification in large-scale rfid systems,” IEEE Transactions

on Parallel and Distributed Systems, 21 Nov. 2013.

(10]
(]
[12]

[13]

(14]

[15]

[16]

[17]

1518

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

