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ABSTRACT

This paper presents Recitation, the first software system that uses
lightweight channel state information (CSI) to accurately predict
error-prone bit positions in a packet so that applications atop the
wireless physical layer may take the best action during subsequent
transmissions. Our key insight is that although Wi-Fi wireless phys-
ical layer operations are complex, they are deterministic. This en-
ables us to rehearse physical-layer operations on packet bits before
they are transmitted. Based on this rehearsal, we calculate a hidden
parameter in the decoding process, called error event probability
(EVP). EVP captures fine-grained information about the receiver’s
convolutional or LDPC decoder, allowing Recitation to derive pre-
cise information about the likely fate of every bit in subsequent
packets, without any wireless channel training. Recitation is the
first system of its kind that is both software-implementable and
compatible with the existing 802.11 architecture for both SISO and
MIMO settings. We experiment with commodity Atheros 9580 Wi-
Fi NICs to demonstrate Recitation’s utility with three representative
applications in static, mobile, and interference-dominated scenar-
ios. We show that Recitation achieves 33.8% and 16% average
throughput gains for bit-rate adaptation and partial packet recov-
ery, respectively, and 6 dB PSNR quality improvement for unequal
error protection-based video.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless Communi-
cation

Keywords

Wireless; channel state information; packet prediction; EVP; bit
rate adaptation; unequal protection

1. INTRODUCTION

To achieve faster speeds in the face of increasing user demand,
wireless local and wide area networks now turn to wideband trans-
mission [44, 53]. For example, 802.11ac can now transmit over a
full 160 MHz of bandwidth. As a result, different subcarriers now
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Figure 1: Data from 20 MHz 802.11n wireless channels. (a)
Signal-to-noise ratio (SNR) across different subcarriers, measured
over eight received packets; (b) Bit error rates (BERs) across dif-
ferent subcarriers; (¢) The BER of decoded data bits, by position in
the packet.

experience different subchannels [2, 30, 34]. Figure 1 illustrates
these wide variations in (a) signal-to-noise ratio (SNR) and (b) bit
error rate (BER). How do Wi-Fi and other wireless designs cope
with this subcarrier diversity? The standard approach comprises
two techniques, with the goal of equalizing the BER of all bits in
a packet. First, the sender applies error control coding to produce
a redundancy-containing stream of coded bits from the stream of
data bits that make up a single packet. Then, the sender interleaves
and pseudo-randomly spreads the coded bits over the different sub-
carriers of the wireless channel, before transmitting them over the
air. We illustrate this process in Figure 2. Is this effective? Fig-
ure 1(c) shows that often, the answer is unfortunately no: note the
visible difference in BER for data bits in different positions of the
packet, ranging from 10~ to almost 1072
This forces existing wireless designs like Wi-Fi to take a con-
servative approach, applying enough coding to drive down BER
across the packet so that even the highest BER is less than 1070,
In this work we take a different position, exploring what we could
do if we could construct a picture of a future packet like the one in
Figure 1(c) simply by hearing the preamble of a recent packet. If
we can construct such a picture, a number of possibilities emerge:
1. Bit-rate adaptation. Wireless channel quality is dynamic [8,
12, 52], and so senders using fixed bit-rates need to promptly
select the rate at which they send information. Senders using
rateless codes [11, 36] also benefit by learning when to stop
sending rateless coded units.

2. Partial packet recovery. Receivers can leverage partially-re-
ceived packets to improve throughput [14, 21]. More partially-
received packets result when the sender selects data rates at or
higher than the channel can support. Accurate per-bit BER pre-



dictions allow the sender to decide whether the speed gains re-
sulting from such higher data rates outweigh the consequent re-
transmission overheads.

3. Unequal error protection. Packet bits may have differing lev-
els of importance, e.g., key frames versus difference frames in
video packets. Important bits are better placed at positions that
are less likely to suffer from decoding errors [1, 19, 43].

In order to realize this vision, the wireless system needs to ana-

lyze each element of the physical layer design shown in Figure 2,

most notably the error-controlling encoder and decoder, and the

interleaving and de-interleaving. The missing piece is a way of an-
alyzing how BER measured at each constituent subcarrier impacts
the final confidence of each received data bit.

This paper presents Recitation, the first system that uses the chan-
nel state information (CSI) present in a packet’s preamble as input,
and based on this information alone, makes highly accurate packet
error rate predictions so that a sender may select the best bit rate be-
fore the next transmission (Applications 1 and 2). Solely based on
CSI data in the header, Recitation can also identify the error-prone
bit positions in a packet so that the sender may rearrange packet
bits based on application-level importance (Application 3).

To accomplish this, Recitation directly tackles the heretofore un-
clear relationship between diverse subcarrier SNRs and 802.11 de-
coding failures. Our key insight is that while the wireless physical
layer is highly complex, it is (or can be designed to be) determinis-
tic. This enables us to “rehearse” every operation on future received
bits, for more accurate results than previous approaches such as Ef-
fective SNR (ESNR) [12] and SoftRate [52], as explained below in
§6. We calculate the BER for each coded bit at point (a) in Figure 2
and carefully replay the operation of the decoder. Based on this
“rehearsal” of the decoder, we calculate a quantity we term error
event probability (EVP), a hidden parameter in the decoding pro-
cess. EVP captures the probability of the decoder making a mistake
at each step of its operation, thus giving extremely fine-grained de-
coding information. Based on EVP we then derive confidences of
each data bit’s correctness at point (b) in Figure 2, without requir-
ing any wireless channel training. We demonstrate this approach in
both 802.11°s standard convolutional codes, as well as cutting-edge
LDPC codes, establishing the generality of our approach.

Contributions. This paper makes following contributions. First,
we formulate a novel metric that explicitly and precisely takes error
control coding into account in its estimation of which packet data
bits are likely to be correct (EVP). Second, we describe the design
and implementation of Recitation, a system that integrates EVP
with unequal error protection, partial packet recovery, and bit rate
adaptation schemes. Third, we implement Recitation on the com-
modity Atheros chipset and present a comprehensive, testbed-based
experimental evaluation that shows EVP’s utility in both static and
mobile scenarios with background traffic and interference.

Limitations. Recitation accurately calculates per-bit confidences
of future packet receptions based on past receptions, and is thus
most effective in the case of a channel where packet collisions are
not the dominant factor limiting throughput, but in §4 we show
promising throughput gains both in networks with typical levels of
background traffic, and in interference-dominated networks.

We implement Recitation on commodity Atheros 9580 Wi-Fi net-
work interface cards (NICs), and present experiments that vali-
date the efficacy of the Recitation design. We demonstrate Recita-
tion’s utility in the three above applications. For each applica-
tion, we compare Recitation with state-of-the-art approaches us-
ing a trace-driven GNU Radio evaluation. Recitation achieves sig-
nificant performance improvements: a 33.8% average throughput
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Figure 2: Scrambling, error control coding, spreading, and inter-
leaving in the standard Wi-Fi architecture.

gain over ESNR [12] for bit-rate selection, a 16% average through-
put gain over Maranello [14] for partial packet recovery, and 6 dB
PSNR video quality improvement over standard approaches for un-
equal error protection. We also evaluate the amount of computation
Recitation requires to show that that it is practical. §4 concludes
that Recitation is software-implementable and compatible with the
existing 802.11 multiple-input and multiple-output (MIMO) phys-
ical layer without hardware modification.

Roadmap. The rest of this paper is structured as follows: §2
presents our design, §3 our implementation, and §4 an experimen-
tal evaluation. §5 discusses future extensions to Recitation. §6
surveys related work before §7 concludes.

2. DESIGN

This section outlines the design of Recitation, starting with a
primer on the relevant parts of the Wi-Fi physical layer in §2.1.
Next we present the design of the EVP metric in Section 2.2, first
in principle (§2.2.1), then in the context of Wi-Fi (§2.2.2), and then
conclude with refinements that make its computation tractable in
practice (§2.2.3).

2.1 Primer: Controlling errors in Wi-Fi

Figure 2 illustrates the 802.11 architecture [17] at a high level.
At the sender, a scrambler deterministically whitens the original
data bits. An encoder then maps the data bits into a larger num-
ber of partly-redundant coded bits. Orthogonal Frequency Division
Multiplexing (OFDM) [26] divides the channel bandwidth of 20 or
40 MHz into 64 or 128 312.5 KHz subcarriers. The sender then
interleaves the coded bits before mapping them to subcarriers and
modulating them into symbols. Each subcarrier conveys indepen-
dent symbols simultaneously on different frequencies. Together,
the combined signal is called an OFDM symbol. At the receiver,
each received OFDM symbol undergoes the complementary series
of operations to recover the original data bits.

2.1.1 Scrambling, interleaving, and modulation

The scrambler performs bit-wise XORs between a pseudo ran-
dom sequence and the original data bits. At the receiver, the orig-
inal data bits are recovered by the same operation. As the random
number sequence is specified in 802.11 standards [17], knowing the
scrambled data bits is tantamount to knowing the original data bits.
In the rest of the paper, we focus on the scrambled data bits and
refer them to data bits for short, unless explicitly stated otherwise.

After encoding (discussed separately below in §2.1.2), the sender
interleaves coded bits within each block of B bits in one OFDM
symbol, to avoid consecutive coded bits being mapped onto faded
subcarriers. The block interleaver uses two known and pseudo-
random mappings, also specified by the 802.11 standard. After
interleaving, the sender maps the data bits onto OFDM subcarri-



ers for transmission. Due to interleaving, long runs of consecutive
coded bit errors are largely avoided. The interleaving, however,
only re-allocates the positions of coded bits (their BERs are still
diverse). The decoded data bit BERs thus remain diverse, as we
can see from Figure 1(c). The periodical BER pattern across data
bits is because interleaving is performed in the unit of OFDM sym-
bols, i.e., the operations within each OFDM symbol is the same and
these operations are repeated over different symbols.

Although interleaving and modulation are complex, their oper-
ations are deterministic. We thus know the subcarrier over which
each coded bit travels. Furthermore, subcarriers are narrow-band
in 802.11, and so their SNRs can be computed from the CSI. We
thus employ narrow-band SNR-BER relationships to calculate the
BER of each coded bit (point (a) in Figure 2).

2.1.2 Encoding and decoding

Encoding. Convolutional coding is the default error control scheme
in 802.11a/g/n/ac. Encoding can be seen as transitions of a state
machine between a number of different states. At each step, the en-
coder inputs one data bit, triggers a state transition, and outputs two
coded bits.! To illustrate the concepts, we consider in this section
the simple /2-rate convolutional code with four states in Figure 3.
At state a, if the input packet bit is “0”, the state machine stays
at this state after the i state transition and outputs two coded bits
“00”. It will transition to state ¢ and output coded bits “11” when
the input packet bit is “1”. Suppose the incoming data bits were
all zeros: then the encoder will remain at state a and all the output
coded bits would be zero, corresponding to PATH-1 in Figure 3.

Low-Density Parity Check (LDPC) codes are recently appearing
in 802.11n/ac [17]. They are block codes where the encoder divides
data bits into k-bit data blocks, encoding each data block into n-bits
by a matrix computation [31, 41]. The ratio between k and n, i.e.,
k/n, defines the code rate.

Decoding. At the receiver, the received coded bits may contain
errors. The decoder aims to find the most likely decoding result
according to different criteria. The convolutional decoder approx-
imates an optimal decoding by computing the number of differing
bits, or Hamming distance, between the coded bits and the received
bits, choosing the path that minimizes this Hamming distance. The
best LDPC decoders typically adopt a variety of belief propagation
(BP), which propagates information in a graph structure containing
parity checks, stopping decoding when the propagated information
(beliefs) satisfy all parity checks, or after a predefined maximum
number of iterations.

2.2 Error event probability

A packet decoding fails exactly when excessive errors occur in
the received coded bits, i.e., the convolutional decoder selects an
incorrect path (e.g. PATH-2 in Figure 3) or the LDPC decoder
experiences a number of errors exceeding its error correction capa-
bility (ECC) in any coded block.2

In this event (an error event) the decoded data bits also contain
errors. We denote the probability that an error event occurs the er-
ror event probability or EVP in this work. More precisely, EVP;
describes the probability that any faulty path diverges from the cor-
rect path in the i state transition for convolutional codes, which

1Other code rates are achieved using the puncturing technique [17]
based on the Y rate.

ZSince convolutional codes are not block-based, instead processing
data bits as a bit stream, the number of coded bit errors they can
tolerate depends on the density of those errors [51]. Therefore, in
contrast with LDPC codes, convolutional codes have no fixed ECC
value, and their decoding performance must be explicitly analyzed.
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Figure 3: Convolutional coding. 1/11 along a branch means data
bit “1” is decoded from the two coded bits “11”.

captures the likelihood of a decoding error at data bit i. For LDPC
codes, EVP; describes the probability that an error event occurs
within data block i.

2.2.1 EVP calculation in principle

We now explain how to compute EVP for convolutional and
LDPC codes, showing that EVP can accurately predict packet error
rate (PER) and bit error locations.

Convolutional codes. An incorrect path such as PATH-2 diverges
from the correct path PATH-1 at some data bit i, as shown in Fig-
ure 3.3 Since PATH-1 and PATH-2 differ by 6 coded bits, if more
than three (= | (6 — 1)/2] + 1) errors occur in the coded bit stream
for PATH-1, these errors will result in an incorrect PATH-2 decod-
ing. Therefore, in this example, the probability that the received
sequence is decoded as PATH-2 can be calculated by the summa-
tion of the probabilities for all 22: 4 (2) cases. The probability of
each case can be further calculated using the coded bit BERs. For
instance, the probability in our example that only the first four high-
lighted bit positions are in error is [ ;e p; - Hj€¢(1 -pj), where

pj is the BER of coded bit j, ¥ = {1,2,3,5}, and F = {6,7}.

PATH-2 is of course just one of many incorrect paths, so EVP;
is the probability that any path diverges from the correct path at
packet bit i:

EVP; = Zje?’[ PpATH-j» )]

where P; is the set of all faulty paths diverging at packet bit i, and
PpaTH-j is the probability that the received coded bits are decoded

as PATH-j.# #; contains all possible faulty paths with different
Hamming distances and thus grows exponentially in path length.
Therefore we need a way of bounding the number of paths Recita-
tion searches.

Faulty paths have diverging segments to the correct path, e.g.,
from state transitions i to i + 3 on PATH-2. The longer diverg-
ing segment a faulty path has, the more coded bit differences to
the correct path, i.e., a larger Hamming distance to the correct
path, it tends to have. Error events caused by a faulty path with
a longer Hamming distance are thus more unlikely to occur, be-
cause a longer Hamming distance requires more coded bit errors to
occur together. In a classic paper [51], Viterbi ef al. analytically
derive the probability that an error event is caused by any faulty
path with Hamming distance & for our example code of Figure 3.

3There may exist other paths that diverge from the correct path in
the it state transition as well, which will also cause error events.

4Although we assume the transmitted coded bits are all zeros in
Figure 3, the EVP definition in Eq. (1) can generalize to any coded
bit sequence by symmetry, as when we focus on the difference be-
tween the transmitted and received coded bit sequences for PATH-1
and PATH-2 each “1” bit is an error, but this choice is arbitrary.



Their result shows that 98% of the error events are due to faulty

paths with Hamming distance less than eight, suggesting consider-

ing only faulty paths whose Hamming distances are less than eight
in the EVP calculation.

However, two difficulties arise that preclude a direct application
of this analysis: first, the 802.11 specification convolutional code
has 64 states instead of the four in Figure 3. Second, the analysis
of Viterbi et al. assumes uniform coded bit BERs, which is not true
in real wireless channels. Below in §2.2.2 we develop empirical
approximations that reduce the amount of calculation required to
practical levels while adopting the basic principle described above.

Before detailing this empirical calculation, we remind the reader
of the two major uses of EVP:

1. Given the EVPs of each packet bit, the packet error rate (PER)
can be estimated as 1 — Hf\il (1-EVP;), where N is the number
of packet bits in a packet.

2. When the wireless channel is wideband, EVP varies within the
packet, as we show in §4.1.3, and can identify the error-prone
bit positions in the packet.

LDPC codes. Since LDPC codes are block codes, instead of ana-

lyzing the probability that each individual error event would occur

in Eq. (1), we can rely on ECC to directly calculate EVP; as:

EVP;

Prob{e; > ECC},

n;
1=EEC ZiF;eF, I—[ pj- H (d-pp, @
JET JEFI

where e; is the number of bit errors in coded block i, n; is the
number of bits in coded block i, p; is the BER of each coded bit

J, 1 1s a set of [ coded bit errors, ?l is #;’s complement, and
F; is the set of all possible 7;s. The ECC can be calculated either
theoretically or empirically: we take the latter approach for 802.11
LDPC codes in §4.1.2.°

2.2.2 EVP calculation in 802.11

In this section, we describe a practical algorithm to implement
the EVP calculation for convolutional code. Our experiments guide
the design of an algorithm to prune the search space of possible
paths in Eq. (1) for the 802.11 convolutional code. We collect
10,000 real-world CSI measurements from Atheros 9580 NICs and
feed them to an 802.11n specification-compliant transceiver on the
GNU Radio, which features coding rates from '/> to /s and mod-
ulations from BPSK to 64-QAM. Each CSI measurement reflects
an instantaneous measurement of the wireless channel. The sender
adapts the data rate with PER < 20% to transmit packets (which
may succeed or fail) over each channel realization. We record all
data bits and coded bits of each 1,000-byte packet for ground truth,
and all received coded bits and decoded data bits.

Error burst length. We first examine the distribution of the di-
verging segment lengths of faulty paths from the experiment. In
fact, this length cannot be directly measured. For example, in Fig-
ure 3, the diverging segment length of PATH-2 is 8 coded bits. The
length is known only when we can explicitly identify this path. To
address this issue, we introduce the concept of error burst length to
approximate the diverging segment length of a faulty path. We de-
fine an error burst as a sequence of consecutive coded bits, where
the sequence starts and ends both from one coded bit error. In ad-
dition, the distance from any other coded bit error outside of the
sequence to either the beginning or the end of the sequence should

3Prior work [9] theoretically derives ECC for a family of simplified
regular codes, but for irregular codes in general (e.g. the LDPC
codes in 802.11), closed-form solutions are unknown.
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Figure 4: (a) CDF of the error burst length L; (b) Distribution of
the number of coded bit errors, e, relative to the min. number of
errors needed to cause a data bit error e.

be sufficiently large, e.g., 10 bits. For PATH-2 in Figure 3, the er-
ror burst length is seven (from the first coded bit error to the last
one). The error burst length is always less or equal to the diverging
segment length of a faulty path.

For each received corrupted packet, we identity the error burst
and feed the underlying coded bit error burst to the convolutional
decoder to generate the decoded data bit errors. We then remove
the data bit errors from the packet and continue searching for error
bursts. Figure 4(a) depicts the CDF of the error burst lengths L. In
general, L rarely exceeds about 40, and so we conclude that most
faulty paths in 802.11 also have short diverging segment lengths.
In other words, they have just a few bits differing with the cor-
rect path, i.e., low Hamming distances, which is consistent with the
conclusion made in §2.2.1 using the simple code.

Number of coded bit errors. A short Hamming distance & also
implies that the number of errors in the error burst e is also small,
since [ (k—1)/2]+1 < e < k. In Figure 4(b), we further investigate
the number of coded bit errors contained in error events under dif-
ferent code rates in 802.11. For different code rates, the minimum
number of coded bit errors to cause an error event is different, de-
noted as e (although the EEC value for each specific convolutional
code is not fixed, this value has a lower bound, represented by e,
[51]), where e, ranges from five down to two for the 802.11 code
rates from !/2 to 3/s, respectively. Figure 4(b) shows that error events
usually contain e or ey + 1 coded bit errors for all the code rates.
In particular, e and ey + 1 together account for more than 80% of
the error events for all four code rates.

Our conclusion is that we only need consider relatively few coded
bit errors e that form relatively short bursts of length / in the EVP
calculation. Based on the data, we consider only ¢ = e and ey + 1,
and [ < L =40, 32, 30, and 43 for the code rates from '/> to s,
capturing around goth percentile burst length for each respective
code rate. Therefore, these two parameters determined from Fig-
ure 4 can help eliminate unlikely cases from the EVP calculation.
We will show in §4 that this error burst length reduction can make
the computation in Recitation tractable on commodity devices, and
achieves substantial performance gains.

Handling different bit error patterns. So far, one more issue re-
mains. In Figure 3, to calculate the probability that the received
sequence is decoded as PATH-2, we enumerate all possible cases
that result in PATH-2. The reason we can do so is because we know
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which coded bits on PATH-2 are different from the correct path. In
general, when e errors form a /-bit burst, there are (é:%) possible
error combinations (a burst starts and ends from one coded bit er-
ror). For each combination, we need to tell whether it can cause
a decoding failure even when we do not know which coded bits
the faulty path are different from the correct path. To address this
issue, we test all possible error combinations off-line in Figure 5.
For each coding rate, Figure 5 provides the probability that an er-
ror combination, with e coded bit errors forming a /-bit burst, will
cause a decoding failure. When e = e; + 1, we eliminate the re-
dundant combinations that are already calculated when e = ¢;. We
view Figure 5 as a look-up table for Recitation’s EVP calculation.
‘We note that the computation of the data in Figure 5 is just an one-
time effort, which we have completed offline.

Recitation’s EVP calculation. For each data bit i, we put the
above ideas together in the following algorithm:

Step 1. Use CSI to compute the BER of each coded bit, p Ji
and initialize EVP; « 0

Step 2. For each error combination ¥, update EVP; «
EVP; +we i - [ljeFpj - [ljgr(l = pj)

Step 3. Return EVP;

EVP; is initialized as zero and the algorithm updates it when
enumerating all possible error combinations, e.g., e coded bit er-
rors form an error burst and the burst length / is no more than L.
In Step 2, p; is the BER of the coded bit j derived from CSI. Each
error combination ¥ indicates the positions of the coded bit errors.
The term [];e7pj - [1j¢#(1 — p;) gives the probability that this
error combination could occur, and the weight w,, ; is the probabil-
ity that this error combination will cause a decoding failure, which
is obtained from Figure 5. Recitation then iterates the above EVP
calculation for all data bits. As mentioned in §2.2.1, these calcu-
lated EVPs can be used to derive the packet error rate (PER) and
indicate the error-prone bit positions in the packet.

In 802.11 MIMO transmissions, the sender encodes data bits to
coded bits and then distributes them deterministically across dif-
ferent spatial streams. Our design Recitation is thus applicable to
these transmission modes as well, with a similar EVP calculation.
Recitation’s protocol summary. In Recitation, a sender uses the
CSI from the previous transmission to predict the future packet re-
ception under different configurations and then select the best ac-
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Figure 6: Recitation’s error combination pruning technique, where
coded bit errors occur at positions ¥ = {1,5,6,8,15}.

tion for the subsequent transmission. The CSI information is ob-
tained by explicit CSI feedback, which is lightweight [12, 38].

2.2.3  Reducing computational complexity

The delay with which the sender can compute and act on the EVP
metric gates Recitation’s efficacy. For example, if we want to select
a data rate for a packet using the PER predicted, the EVP compu-
tation has to be completed before that packet’s transmission. Our
experimental investigation with Atheros AR9580 NICs reports typ-
ical 2 ms delays for processing a packet of the maximum payload
under the 802.11n data rates (i.e., from 6.5 Mbit/s to 65 Mbit/s). It
introduces a stringent timing requirement for the EVP computation.
Recitation therefore employs two additional techniques to reduce
computation complexity of the EVP calculation. We evaluate the
algorithm in §2.2.2 in conjunction with the techniques proposed in
this section in §4.

Error combination pruning. SNRs and thus the coded bit BERs
can be highly diverse for wide-band transmissions (as shown in
Figure 7), which makes the probability that each error combination
occurs dramatically different. According to our experiments, such
a difference can be as high as 10 orders of magnitude. Based on
this observation, we only consider the combinations that consist of
high coded bit BERs in the EVP calculation. We sort / — 2 coded
bits in the burst (except the first and last bits) according to their
coded bit BERs in a decreasing order and only examine the first
(632) combinations, where 4 < [ — 1. Figure 6 shows an example
of the error combination pruning with / = 15 and e = 5. The five
marked squares in line (a) of Figure 6 represent one error combi-
nation. Line (b) of Figure 6 depicts the sorted sequence (except the
first and the last coded bits) in decreasing order according to their

coded bit BERs. With 4 = 8 and e = 5, we only consider (g) =56
error combinations, instead of (137) = 680.

Periodicity of the EVP. The second technique we adopt is to lever-
age the periodic property of the EVP. We find that the EVPs of ex-
hibit a period length related to the number of coded bits contained
in one OFDM symbol. The periodic property exists because the
interleaving and modulation operations are deterministic and the
wireless channel is stationary for the duration of one frame at nor-
mal walking or even driving speeds [50]. The coded bits at the
same position of their own OFDM symbols are transmitted over
the same subcarrier, experiencing the same channel quality. The
BERs of the coded bits are thus periodic, leading to the EVPs of
the decoded packet bits having a periodical property. We experi-
mentally verify this phenomenon in §4.1.3. With this observation,



we can compute EVPs for the data bits in one period only and reuse
them for the following symbols in practice. As the period length in
802.11 is a small integer, by doing so, the computation complicity
of Recitation is dramatically reduced and does not increase as the
packet length.

3. IMPLEMENTATION

We implement Recitation on Atheros 9580 NICs that work on
802.11n 20 MHz channels with 64 subcarriers. Each 9580 NIC is
connected to a Qualcomm System-on-Chip QCA9558 running an
embedded Linux system, as shown in Figure 7(b). According to
the 802.11 standard, the physical layer calculates CSI upon each
correctly received packet when the sounding flag is set. We modify
the driver to turn on this flag and let Atheros 9580 chipset export
CSI, which causes no additional computation overhead. We also
record both correct and corrupted packets at the receiver. Other
useful information related to the packet transmission, e.g., RSSI,
noise floor, data rate, et c. is reported as well. This implementation
forms the basis for all results reported in §4.

4. EVALUATION

We present a testbed-based experimental evaluation of Recita-
tion. We begin in §4.1 with microbenchmarks evaluating Recita-
tion’s accuracy in predicting PER and error-prone bit positions,
and measuring its computational complexity overhead. In §4.2 we
present the results of experiments measuring end-to-end applica-
tion performance. The parameter e, the number of coded bit errors
to investigate, equals to e; and ez + 1, where e = 5, 3, 3, and
2 for '/, 23, 3/, and /6 code rates, respectively. The maximum er-
ror burst length is set to 40, 32, 30, and 43 for rates from '/> to
3/e, respectively. These parameters have been investigated and de-
termined in §2.2.2. We also implement other approaches used in
three applications for the performance comparison.

4.1 Microbenchmarks

Methodology. We deploy Atheros 9580 nodes in our campus as
access points (APs). These cover a path from a bus station to a
research lab as shown in Figure 7 (a). We deploy another Atheros
9580 node as receiver to connect each AP to 50 random positions.
At each position, the AP sends 10,000 UDP packets with 1,000-
byte random payloads to the receiver. We iterate the transmissions
for all eight rates using between one and three spatial streams. In
each run, we fix the data rate and turn off link-layer retransmissions
to measure the underlying PER. We thus obtain the PER statistics
for all SISO and MIMO rates at each position. Throughout the ex-
periment, the receiver records both correct and corrupted packets,
and CSI from each correct packet. We thus obtain the decoding bit
error patterns within each packet over lossy links. We then eval-
uate Recitation by comparing its prediction results with the mea-
surement results.

4.1.1 Frequency selective fading

Our measurements in Figure 7 (a) cover typical 802.11 Wi-Fi
environments, e.g., an open-space hall, a parking lot surrounded
by cars and stores, an office, etc, with different levels of frequency
selective fading. Figure 7 (c) plots the CDF of the maximum sub-
carrier SNR difference from each CSI measurement. In 20 MHz
channels, we observe a difference of at least 2.7 dB, nearly 10 dB
for 50% of the links, and a maximum of 22 dB. From Figure 7 (c),
we see that 40 MHz channels have even higher subcarrier diversity,
from 7.6 dB up to 28 dB. As the trend of the 802.11 development
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Figure 7: (a) Testbed map; (b) Atheros 9580 node used in the
experiment; (¢) CDF of the maximum subcarrier SNR difference
(dB) in each CSI measurement.

is to further increase the bandwidth, we expect subcarrier diversity
will increase in future Wi-Fi standards.

4.1.2 PER prediction

Figure 8(a) and (b) depict the packet error rate (PER) predic-
tion performance Recitation achieves with 802.11n convolutional
codes. We also compare against the state-of-the-art approach Ef-
fective SNR (ESNR) [12].

802.11n SISO. Figure 8§ (a) shows prediction accuracy for 802.11
single-antenna rates.® For all the links whose measured PERs fall
into one bucket, we calculate the differences between the measured
and predicted PERs, and plot the average prediction error as well
as the error variance. From the figure, we see that Recitation’s
predictions are highly accurate in all buckets, with an average pre-
diction error between 0.003 and 0.05, and variance less than 0.01.
ESNR makes a prediction error of 0.22 on average. ESNR’s in-
accuracy arises because the PER versus SNR curve has a narrow
transition range, and ESNR is a relatively coarse channel quality
indicator whose predictions are more sensitive to uncertainty in the
SNR measurement. ESNR thus provides mostly binary information
about whether PER is less than a small threshold, e.g., in bucket
[0 ~ .01]. As Recitation can utilize all subcarrier SNRs in the EVP
calculation, it accurately predicts PER even in the transition range.

802.11n MIMO. Figure 8 (b) depicts the PER prediction per-
formance for 3 x 3 MIMO rates. Similar to Figure 8 (a), we di-
vide the PER transition range into seven buckets. Due to larger
throughput gaps between two consecutive MIMO rates, we obtain
fewer measurements between 0.06 and 0.3 in the PER transition
range. Therefore, the prediction errors are slightly higher than that
in Figure 8 (a). Recitation’s average prediction error varies between
0.002 and 0.07, while ESNR’s average prediction error can be up
to 0.34. Similar to SISO rates, ESNR achieves a small PER pre-
diction error in the bucket [0 ~ .01]. In contrast, the average errors
Recitation achieves are much smaller in all buckets.

LDPC codes. To evaluate Recitation with LDPC codes, we in-
vestigate the EECs of the 802.11 LDPC codes experimentally (dif-
ferent data rates employ different LDPC codes). We implement the
802.11 LDPC encoder/decoder and integrate them in our 802.11n
specification-compliant transceiver introduced in §2.2.2. After a

SFor clarity of presentation, we divide the PER range (0.0 to 0.3)
into seven buckets. Most applications, like rate adaptation, partial
packet recovery, etc., work within this PER range.
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Figure 8: PER prediction comparison. (a) Convolutional codes,
SISO rates (1 x 1); (b) Convolutional codes, MIMO rates (3 X 3);
(¢) LDPC codes, SISO rates (1 x 1).

LDPC encoder encodes a data packet, we manually flip coded bits
to introduce coded bit errors. We then feed the polluted coded bits
into LDPC decoders and repeat this process to evaluate the maxi-
mum number of coded bit errors each LDPC code can tolerate.

As the LDPC codes implementation on Atheros 9580 NICs as
well as other NICs, like the widely used Intel 5300 NICs in the
community, is not available to us, we use an 802.11n simulator to
evaluate the PER prediction performance with LDPC codes. We
adopt the CSI trace collected in Figure 7 as the ground truth for
the channel, and transmit packets over the channel described by the
CSIs. We then compare the predicted PER against the measured
PER. Figure 8 (c) depicts that Recitation can also achieve an accu-
rate PER prediction using LDPC codes. According to the statistics,
the average prediction error varies from 0.002 to 0.035, and the
variance is less than 0.01. The accuracy achieved in this figure is
higher than that in Figure 8 (a) because simulations introduce less
channel uncertainty. Similar to convolutional codes, the ESNR’s
average prediction error is much higher than Recitation, up to 0.21,
and it performs well in the bucket [0 ~ .01] merely.

4.1.3 Prediction of decoding error locality

In this section we continue our evaluation of Recitation with
convolutional codes on Atheros 9580 nodes. Figure 9 (a) plots
the BERs of the data bits in one packet. We measure BER from
a randomly-selected link in our test-bed using a '/2 code rate and
QAM-16 modulation. For clarity, we show the BERs of the first
3,000 bits. The BERs of the remaining data bits follow similar pat-
terns. From the figure, we observe (echoing similar observations
by Miu et al. [33] and Han er al. [13]) that the BERs of each data
bit are highly different, forming a pattern that has a period length
equal to the size of the OFDM symbol. Therefore, we plot the av-
erage BER of the data bits in one period in Figure 9 (b), where the
x-axis is each bit position in the period and the y-axis is the average
BER over all the data bits with the same offset in each individual
period. Figure 9 (b) clearly shows that some data bits are more
likely to have decoding errors. In Figure 9 (c), we use Recitation to
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Figure 9: (a) BERSs of each data bit in a packet; (b) Data bit BER
in one period; (¢) Data bit EVP in one period; (d) The prediction
accuracy of error-prone bit positions.

predict those error-prone positions. The predicted pattern matches
the measured one, based on which we can identify all error-prone
bit positions in one packet.

Since EVP does not describe the error dependence with other bits
(§2.1), the EVP of each bit is smaller than the BER. Thus, to quan-
tify prediction accuracy, we do not conduct a bitwise comparison.
Instead, we divide each period into equal ranges, using thresholds
to classify each into “safe” and “unsafe” clusters. All data bits in
a safe range are considered to be safe and more important bits of a
packet can be placed in the safe ranges.

Through our experiment, we find that it is sufficient to divide one
period into 4 to 32 ranges for the eight data rates. For all the links
with corrupted packets in our experiment, we calculate the range
error rates and use an empirical threshold, e.g., 0.04, to classify
all the ranges into the “safe” and “unsafe” categories as ground
truth. For each range, we then use Recitation to calculate its av-
erage EVP and adopt an EVP threshold to evaluate its prediction
results. We divide our packet trace into training and testing sets.
In the training set, Figure 9 (d) shows when the EVP threshold
is small, Recitation can identify only a few safe ranges from the
ground truth (“Coverage” in Figure 9 (d)), but identification accu-
racy is high. As the threshold increases, Recitation identifies more
safe ranges but accuracy decreases slightly. We find that the EVP
threshold 2.6 x 107> achieves a good tradeoff between the accu-
racy (92%) and the coverage (91%). In the testing set, Recitation
achieves a similar performance. The setting is used for the applica-
tion in §4.2.3.

4.1.4 Computation and energy overhead

Computation overhead. While Recitation is accurate in its PER
and error-prone bit position predictions, it can be truly useful in
practice only if its computational overhead is manageable. To this
end, the parameter A used in the “error combination pruning” tech-
nique controls the computation overhead and the EVP accuracy of
Recitation. According to the 802.11 timing requirement in §2, an
acceptable delay should be less than 0.25 ms such that the predic-
tions for eight different data rates can be completed within two mil-
liseconds. Figure 10 (a) depicts the average delay to predict PER
for one PHY configuration when A varies. When A varies from 5
to 30, Figure 10 (a) shows that the computational delay of Recita-
tion increases from 0.004 to 0.934 ms. For one such eligible A



setting, e.g., 4 = 18, Figure 10 (b) breaks down the computational
overhead for individual data rates with the average delay at around
0.161 ms. The reason that the computation delays for rates 6.5, 13,
26, and 52 Mbit/s are larger is because they use the '/> and /3 code
rates. One OFDM symbol thus contains more coded bits and there
are more error combinations to calculate. It introduces much more
computations than other three rates 19.5, 39, 58.5, and 65 Mbit/s,
which adopts the 3/+ and 3/s code rates.

In Figure 10(c), we evaluate the PER prediction accuracy un-
der different choices of A. For each link investigated in Figure 8§,
we vary A to obtain different PER predictions and compare them
with the measured results. Figure 10 (c) shows that when A is
small, e.g., 4 < 15, the prediction error is large, e.g., up to 0.23
on average. When A is sufficiently large, Recitation achieves high
accuracy, e.g., the error decreases to 0.013 when A = 18. As A fur-
ther increases, the accuracy improvement becomes marginal, while
the computation overhead dramatically increases. Based on the re-
sults, we select 4 = 18 as a default setting, which was used in
both Figures 8 and 9. In Figure 10 (c), we also examine Recita-
tion without the “error combination pruning” approximation. From
the figure, we can see its average prediction error is 0.011, show-
ing that this technique introduces a negligible accuracy loss, while
reducing computational complexity dramatically.

Energy consumption. We measure the Recitation power consump-
tion on Atheros 9580 nodes using an APPA 72 multimeter, by in-
vestigating its energy usage in comparison with the baseline when
our design is not used. Since Recitation is a fully software-based
system, power consumption mainly stems from CPU computation,
which is lightweight. Our measurement shows that the additional
power consumption caused by Recitation varies from 601 mW to
685 mW, which is comparable to or even longer than a variety of
recent mobile applications [27, 60, 61], indicating that Recitation
is energy efficient for mobile platforms. When a mobile device of
Recitation communicates with a line-powered AP, the energy effi-
ciency can be further improved: the AP can always compute the
optimal configuration using the CSI measurement. For the down-
link, the AP uses the optimal configuration to transmit packets; for
the uplink, the AP sends the optimal configuration, instead of CSI
[57], as feedback to avoid computation on the mobile device.

4.2 Applications

In this section, we demonstrate the utility of the accurate and
fine-grained decoding predictions Recitation achieves through three
representative applications: bit-rate adaptation, partial packet re-
covery, and unequal error protection-based video transmission. The
first two applications aim to evaluate the accurate PER prediction
of Recitation. In particular, the former one focuses on the PER
prediction when PER is close to zero and the latter one focuses on
the prediction with the PER transition range. The third applica-
tion targets to evaluate the utility of the fine-grained error-prone bit
position prediction. We use extensive trace-driven evaluations to
compare against the state-of-the-art approaches.

Evaluation setup. We collect packet transmission and CSI traces
in the laboratory (the bottom AP in Figure 7), considering both mo-
bility and non-line-of-sight in the trace collection. We repeat the
trace collection twice for 1 x 1 SISO and 3 x 3 MIMO settings, re-
spectively. The AP continuously generates UDP packets. For each
packet, AP sends out eight copies, iterating for all eight rates. The
CSI from the eight copies are approximately the same since CSI is
measured from the preamble, which does not depend on the rate.
We thus view the transmissions of the eight copies as the ground
truth for eight different rates when AP sends one packet over the
current channel. During the AP’s transmission, a receiver moves
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in a U-shaped route at a walking speed [15] in the laboratory and
collects about 93,000 channel measurements. From CSI indices 0O
to 30,000, the receiver moves far away from the AP and there is
line-of-sight for most of time. From indices 30,000 to 50,000, the
receiver takes a U-turn and traverses through a meeting room. The
channel is hence relatively poor and non line-of-sight. In the rest
of the CSI trace, the receiver moves towards the sender and there is
no line-of-sight for most of time. In addition, the CSI feedback is
included and its overhead is factored into the evaluation.

4.2.1 Wi-Fi rate selection

We evaluate the following bit-rate selection algorithms:

1. Rect-Rate: The sender uses the CSI from the receiver feedback
to predict PER for each data rate by Recitation, and selects the
highest rate with the predicted PER < 0.1.

2. ESNR: The rate selection based on the proposed ESNR ap-
proach in [12]. ESNR is compared as it reports the best known
throughput performance so far. ESNR has shown to outperform
other recent approaches, e.g., SoftRate [52]. We do not evaluate
each of those individually.

3. OPT: An oracle selects the optimal data rate for each transmis-
sion, thus performance is an upper bound for all rate selection
approaches in the experiment.

Some recent works, e.g., [4, 38], propose to harness the frequency

diversity to adapt rates, but they require a substantial redesign of

the current 802.11 PHY with customized hardware. Therefore, we
do not empirically compare Recitation with them. In this experi-
ment, we feed the CSI trace into each approach. For each CSI, dif-
ferent approaches select different rates to transmit the packet, and

the collected ground truth determines the transmission result for a

particular scheme. We compare the throughput of each approach,

where each reported throughput value is averaged in a window of

200 packets transmitted over 200 consecutive CSIs. Figures 11

and 12 plot average achieved throughput against time windows of

200 CSI readings.

802.11 SISO rates. Due to the inaccuracy of the PER predic-

tion, ESNR selects suboptimal bit rates more frequently than Rect-

Rate thus suffering a throughput penalty. Rect-Rate tracks the per-

formance of OPT within 16% on average, while ESNR is only

within 29%. Rect-Rate outperforms ESNR by 25.6% on average
and 63.8% at most. To analyze the performance achieved by each
approach, we characterize the rate selection accuracy of Rect-Rate
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and ESNR, with respect to OPT, for each transmitted packet. We
classify the transmitted packets into three categories: over-selected,
accurate, and under-selected data rates. Rect-Rate selects correct
rates for about 70% of packets. The performance gap between
Rect-Rate and OPT attributes to the 20% under-selected and 10%
over-selected data rates. In comparison, ESNR has nearly half
transmissions with under-selected data rates, which primarily limit
its throughput.

802.11 MIMO rates. The performance of the two approaches with
MIMO rates is similar to that in Figure 11. From the statistics, we
find that the Rect-Rate outperforms ESNR by 33.8% on average
and up to 78.2% occasionally. Referring to OPT, we observe that
the fractions of the accurate data rate selection are 52% and 38%
for Rect-Rate and ESNR, respectively. For 80% of transmissions,
throughput gaps of Rect-Rate and ESNR (to OPT) are less than
17 Mbit/s and 35 Mbit/s, respectively. In addition, Rect-Rate tracks
the performance of OPT within 14.3% on average, while ESNR is
only within 34.4%.

Accelerated mobility. To evaluate each approach in different mo-
bile environments, we sample the CSI trace, collected when the
receiver moves at a walking speed, to accelerate the mobility of
the sender. We sample the trace every ¢ CSIs to form a new trace,
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which simulates a varying channel that the channel dynamics are
accelerated ¢ times. We evaluate the effect of mobility on each ap-
proach in Figure 13. Both approaches select the current data rate
based on the past CSI measurement. They implicitly rely on the
correlation between the current channel quality and the previous
one. When the sampling interval c is increased to accelerate chan-
nel dynamics, the performance of both approaches decreases. OPT
is not affected, and we omit it in Figure 13. But as ¢ varies from
one to 100, Rect-Rate can still outperform ESNR for both SISO
and MIMO rates. Rect-Rate achieves 21% and 24% average throu-
ghput gains for SISO rates in Figure 13 (a) and for MIMO rates in
Figure 13 (b), respectively.

Burst errors (interference). To evaluate the performance of each
approach against burst errors [18, 25, 37], we repeat the CSI trace
collection in the laboratory, but in addition to the background traf-
fic, we introduce an external interferer close to the receiver and a
hidden terminal to the sender. The interferer periodically generates
interference packets without carrier sense, with an interval between
two error bursts of 11-packets’ worth of airtime. We vary the error
burst duration from two to eight packets in the experiment. To deal
with burst errors, the sender will use the next lower rate if CSI feed-
back is not received after certain packets transmitted [14], which is
set at two in our evaluation.

Figure 14(a) illustrates a snapshot of the rate selections of two
approaches when the burst duration is five. When burst errors oc-
cur, two approaches both gradually decrease their data rates. When
such an interference disappears, after one packet gets successfully
received by the receiver, the sender can promptly adjust its data rate
according to the CSI feedback. The result indicates that the CSI-
based rate selection approaches can promptly recover from burst
errors. In Figure 14 (b), due to the accurate PER prediction, Rect-
Rate outperforms ESNR by 30% on average when the burst error
duration varies from two to eight packets.

4.2.2  Partial packet recovery

We evaluate the following approaches:

1. Maranello: It is the most recent partial packet recovery ap-
proach with the best reported performance [14]. It divides a
packet into blocks and only retransmits erroneous blocks when
the transmission fails.

2. Rect-Maranello: Before a packet transmission, Rect-Maranello
uses Rect-Rate to select the data rate and further evaluates the
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PER of the next higher rate. If this PER is not sufficiently high,
e.g., < 0.3, Rect-Maranello transmits the packet with the aug-
mented rate. It degrades to the original Maranello when the
transmission fails. The data rate is not increased for retransmis-
sions in the experiment.

3. Agg-Maranello: To understand the utility of the accurate PER
prediction, we also compare against an aggressive design, Agg-
Maranello, that always augments to the next higher data rate to
harness more partial packets, suggested by ACK [58]. Similar
to Rect-Maranello, the data rate is not increased for retransmis-
sions neither.

We use the CSI trace collected in §4.1. Figure 15 depicts the
throughput gains achieved by the three approaches, normalized to
the throughput of Rect-Rate (without the data rate augmentation)
in §4.2.1. As Rect-Rate can select the highest data rate with a
low PER, the throughput gain of Maranello is limited, e.g., 1.1Xx
on average. Maranello has an advantage only when the transmis-
sion failure occurs occasionally. For Agg-Maranello, we find that
it even performs worse than Rect-Rate in our experiment. It is be-
cause when the data rate is increased, the PER of the next rate could
be moderate or very high. Without an accurate PER assessment,
aggressively increasing the data rate may cause huge transmission
overhead, which overwhelms the throughput gain from the higher
rate. In our experiment, Agg-Maranello causes a 2% throughput
loss. Benefiting from accurate PER prediction, Rect-Maranello can
wisely increase the rate to make a full use of the channel bandwidth.
According to the statistics, Rect-Maranello outperforms Maranello
and Agg-Maranello by 16% and 30% on average, and 50% and
400% at most. Rect-Maranello performs within 5% of OPT. uACK
in [58] can also harvest such a throughput gain with the help of
extra hardware (additional antennas working on another frequency
band). However, Figure 15 shows that without an accurate PER
prediction, it is challenging to leverage partial packet recovery to
fully utilize the channel bandwidth.

To further analyze the throughput each approach achieves, we
find: Rect-Maranello selects correct rates for most packets. For
Maranello, 37% of rates could be augmented. For Agg-Maranello,
around half of the rates are over-selected.

4.2.3  Unequal bit protection

Packet bits may have different importance, and one of the most
representative applications is media streaming [1, 43]. For exam-
ple, in MPEG-4 video, the packet header is more important than the
payload, and I-frames in payload in turn have a higher priority than
other frames, e.g., P and B frames. The media player can tolerate
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Figure 15: Throughput comparison for partial packet recovery.

decoding errors in these frames, playing the video with a reduced

quality. In contrast, when errors occur in I-frames, video quality

drops significantly, and when errors occur in the header, the entire
packet cannot contribute to the video playback. We evaluate the
following approaches for this application:

1. Rect-Video: Each packet consists of multiple frames and a
fixed-length header. Prior to the packet transmission, sender
uses the EVP threshold to identify “safe” ranges in one data
bit period introduced in Figure 9 and expand them to the en-
tire packet. In our current design, we provide two safety levels:
“safe” and “unsafe”, where the EVP threshold used for this clas-
sification has been determined in §4.1.3. The packet header and
I-frames are given a higher priority than other frames, which
are placed in “safe” ranges sequentially. When “safe” ranges
are occupied, the remaining bits are sequentially placed in “un-
safe” ranges. In our current design, we use only one byte of
extra overhead to record the original position of I-frames in the
packet for the receiver to recover the original packet.

2. Stan-Video: Denotes the existing approach that treats every bit
equally in the transmission. We adopt Rect-Rate to select rates
for Stan-Video and focus on the performance comparison for
the unequal error protection.

We adopt the standard metric, peak signal-to-noise ratio (PSNR),
to measure the video quality [1]. PSNR is on the log scale, and a
differences above 0.5 dB are visually detectable. When PSNR is
above 37 dB, the video quality is considered to be “excellent” and
“bad” when PSNR drops below 20 dB [8, 43]. We use the CSI
trace collected in § 4.2.1 for evaluation. The sender generates a
video streaming to the receiver at 30 frames per second. The video
is MPEG-4 encoded and looped until the end of the experiment.
In Figure 16, we plot the CDF of PSNRs achieved by the two ap-
proaches. We do not distinguish PSNRs that are greater than 40 dB
since the video quality is excellent when it is above 37 dB. Simi-
larly, we do not distinguish PSNRs less than 18 dB. From the fig-
ure, we see that half the time, the video quality in Rect-Video can
be nearly 6 dB higher than Stan-Video, and the improvement can be
up to 11 dB at most. The video quality gain of Rect-Video comes
from the good protection of the packet header and I-frames.

In Figure 17, we further evaluate two approaches in three typical
802.11 WLANS environments: a open-space academic hall, a large
library, and an indoor office, where the frequency selective fading
levels increase. Figure 17 shows that Rect-Video outperforms Stan-
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Video in all three scenarios. The average PSNR gain over Stan-
Video is at least 4.5 dB in hall and up to 6.6 dB in office.

S. DISCUSSION

Relationship with BER. One error event in the decoder usually
results in a sequence of decoded data bit errors. The consequent
“smearing” of probabilities across the data bits causes the BER of
one data bit to be raised by errors from prior data bits. Hence,
BER does not provide a direct measurement due to the dependence
introduced among different packet bits by the encoding, i.e., PER
isnotequal to 1 — ]‘[fil(l — pi), where p; is the BER of each data
biti and N is the total number of packet bits. In contrast, there does
exist a PER-EVP relationship (§2.2.1).

Packet prediction rationale. The prediction of packet reception
is possible because the channel coherence time, within which the
channel quality is relatively stable [10]. 802.11 Wi-Fi is mainly
targeted at a static environment or an environment with walking-
speed mobility, where the channel coherence time varies from tens
of milliseconds to seconds. Since the transmission delay of one
wireless packet is about one to two milliseconds, Recitation can
confidently predict for future packets in the above environments.

Interfering packets. Recitation focuses on predicting wireless
packet reception when packet collisions are not the dominant factor
limiting throughput. While Recitation does not predict the effect of

interfering packets [47, 48], the sender can promptly adjust its data
rate upon receiving the CSI feedback from the receiver when in-
terference disappears (see Figure 14). Hence, Recitation can act
quickly against burst errors and achieve experimental gains in the
presence of background traffic in unlicensed Wi-Fi spectrum (§4).
Joint consideration of Recitation and interfering packets is possi-
ble, e.g., exploring the SINR metric.

Scope of Recitation. The design of Recitation focuses on 802.11
WLAN:S, in which convolutional codes is the default coding scheme
and LDPC codes is an emerging alternative. The packet bit process-
ing in commodity Wi-Fi NICs is regulated by 802.11 standards and
the sole input of our design is CSI. Recitation is thus generic for
different Wi-Fi chipsets.

6. RELATED WORK

Subcarrier aggregation-based techniques. ESNR [12] has the
advantage that it can be derived from the CSI in a Wi-Fi packet
header and can translate a wideband channel to an equivalent nar-
row band channel to facilitate the upper-layer analysis. But as we
show in §4, ESNR leaves performance on the table due to the ap-
proximation of channel quality with a single SNR value. Since the
packet error rate (PER) versus SNR relationship has a very nar-
row transition range, a small inaccuracy in SNR measurement can
cause a significant PER prediction error. In addition, ESNR does
not provide per-bit BER confidences within each packet, making it
unsuitable for our purposes. SoftRate [52] bit rate adaptation simi-
larly aggregates BER across subcarriers in a similar computation to
ESNR. Recitation emulates SoftRate’s per-bit confidence computa-
tion with just the CSI information from the header. Error estimating
codes (EEC) [8] adopt an advanced sampling technique to estimate
the data bit BER, but only estimate the average packet BER.

Approximate communication. Apex [43] demonstrates the util-
ity of unequal error protection for the purpose of media applica-
tions such as video or voice communication that can tolerate loss.
While Apex demonstrates convincing experimental gains for video
applications, it is designed and implemented only for 16-QAM and
higher-order QAM modulations [43, Table 1, Table 2]. Recitation’s
design, in contrast, works with any QAM modulation. In addi-
tional, Recitation does not require any hardware modifications, un-
like Apex—it is realizable on commodity Wi-Fi chipsets.

Softcast [19], FlexCast [1], and ParCast [29] recently propose
novel joint source-channel coding schemes to deliver video qual-
ity that unequally protect video contents. Those works, however,
either require additional physical layer information support (Soft-
PHY [20] in FlexCast) or a completely new physical design (Soft-
cast and ParCast). On the contrary, Recitation enables unequal er-
ror protection via the CSI information from the packet header avail-
able on commodity Wi-Fi chipsets.

Partial packet recovery. Partial packet recovery approaches such
as PPR [21], SOFT [55], Maranello [14], ZipTx [28] and Unite [56]
minimize retransmission overhead. They have the advantage when
packet collisions are the dominant factor limiting throughput or the
channel is extremely lossy even the lowest data rate cannot reliably
transmit a packet. Given the data rate selected bit-rate adaptation
selects with a low PER, the throughput may still increase when
the bit-rate is further augmented, if the throughput gain from the
higher data rate outweighs the retransmission overheads. The ac-
curate PER Recitation predicts enables such an assessment to fully
utilize the channel.

Bit-rate adaptation. A variety of SNR-based bit-rate adaptation
approaches exist, e.g. PBAR [16], OAR [42], CHARM [22], Block-
Rate [49], and Medusa [44]. Due to frequency selective fading,



Zhang et al. [59] and Camp et al. [6] observe that the SNR mea-
surement needs careful calibration. To overcome the SNR mea-
surement issue, many solutions utilize packet reception statistics,
e.g., SampleRate [5], RRAA [54], and MIMO-Rate [35]. Shen et
al. [46] further studies the rate adaptation in multi-user MIMO net-
works. [3, 7, 24] focus on the rate adaptation analysis, [23, 39] con-
centrate on the energy/power control, and [32, 62] explore to corre-
late the link behaviors to rate adaptation in a target network. Recent
studies further propose to adapt data rates by directly measuring
coded BER [52] or symbol-level dispersion in AccuRate [45], but
require specialized hardware. EEC [8] can adapt rates based on
the estimated data bit BER without the hardware modification. Al-
though most of above works are CSI-agnostic, they mainly adapt,
instead of selecting, bit rates. The adaptation is less effective when
channels change faster and the configuration space is more com-
plex (e.g., MIMO). The most recent approach [12] uses ESNR for
the bit-rate selection. Benefiting from an accurate PER predic-
tion, Recitation outperforms the best reported performance for both
802.11 SISO and MIMO rates.

Other physical-layer designs. Bhartia et al. [4] proposes a smart
interleaver to directly map data bits to different subcarriers based
on the bit importance. FARA [38] designs independent modula-
tion and interleaving for each subcarrier to maximize throughput
on each subcarrier. Both approaches harness frequency selective
fading by substantially redesigning the current 802.11 PHY. How-
ever, the hardware-level implementation and transceiver coordina-
tion difficulties are the two major hurdles that prohibit them being
adopted in practice. Recent rateless codes such as Strider [11] and
Spinal [36] can avoid the channel measurement. They however re-
quire either a new PHY design [11] or dedicated hardware to accel-
erate the rateless decoding [36], not applicable to the 802.11 PHY.
COLLIE [40] is a system that statistically discriminates between
loss due to collision and loss due to a weak received SNR. It is thus
complementary to Recitation in much the same way SoftRate is.

7. CONCLUSION

We have described Recitation, a fully software-based system that
uses lightweight CSI information from Wi-Fi NICs to make pre-
cise predictions about the number and location of bit errors in sub-
sequent packets. It works with 802.11°s standard convolutional
codes, and recent LDPC codes. We have shown significant per-
formance improvements for three different applications: bit rate
adaptation, partial packet recovery, and unequal protection-based
video streaming.
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