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ABSTRACT
Given the fact that WiFi-based sensing can be realized by
reusing WiFi communication facilities and communication
frequency bands, integrated sensing and communication
(ISAC) is considered a crucial development direction for fu-
ture WiFi standards, such as IEEE 802.11bf. Traditional WiFi
sensing systems extract channel state information (CSI) from
customized WiFi packets to quantify the characteristics of
the sensing target. This poses challenges for existing WiFi
systems originally designed for communication purposes,
as it requires high-quality and sufficient CSI measurements.
In this paper, we propose SenCom, which extracts CSI from
general WiFi packets. SenCom enables CSI calibration across
different WiFi communication modes and provides unified
CSI measurements for upper-layer sensing applications. We
also devise a fitting-resampling scheme to derive evenly sam-
pled CSI with consistent dimensionality, and an incentive
strategy to ensure sufficient CSI measurements over time.We
build a prototype of SenCom and perform extensive experi-
ments with 15 participants. The results show that SenCom
is competent for a variety of sensing tasks, while incurring
little compromise to the WiFi communication performance.
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1 INTRODUCTION
Recent studies [35, 77, 82] demonstrate the non-intrusive
sensing feasibility of a wide range of wireless radio frequency
(RF) signals, among which WiFi is of special attraction due
to its pervasive deployment [37]. Unfortunately, most ex-
isting WiFi sensing approaches are dependent on specific
radio configurations and special purposed probing packets
for detecting channel variations, which disrupts the normal
WiFi function as a means of communication. In this paper,
we explore a system solution to such a problem - enabling
integrated sensing and communication (ISAC) [15, 53, 67] in
practice without impairing the state-of-the-art communica-
tion routines of WiFi.

Instead of exploring extra spectrum usage or relying on ex-
clusive transmissions for sensing, the proposed solution aims
to make full use of the in-band WiFi communication traffic
without introducing any extra overhead. Such a goal is hard
to achieve because high-performance WiFi sensing requires
quality and sufficiency in its channel state information (CSI),
raising the following challenges. (i) Advanced WiFi (e.g.,
802.11n/ac/ax [8]) supports multiple-input multiple-output
(MIMO) communications [26], which alternates between dif-
ferent modes, i.e., diversity mode and multiplexing mode.
These two modes possess different mapping matrices1 for
different numbers of data streams. The measured CSI cannot
be directly translated to channel coefficients for sensing the
object dynamics without knowing the specific MIMO setting.
(ii) The beamforming [39] adopted in WiFi for strengthening
1The mapping matrix is also known as the precoding matrix.
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Figure 1: Application scenario of SenCom.
the signal directed to the communication clients may lead to
weakened signals reflected from the sensing target, result-
ing in low sensing signal-to-noise ratio (SNR) that degrades
the sensing performance. (iii) As general WiFi transmissions
scatter unevenly in time due to varying communication de-
mands, theremay be insufficient packets to probe the channel
at times, disabling the sensing.
In this paper, we address the above challenges and pro-

pose SenCom, to the best of our knowledge, the first practical
ISAC system that enables seamlessWiFi sensing with general
communication traffic. Figure 1 depicts the SenCom usage
scenario, where SenCom is implemented on one normal WiFi
client and sniffs the ongoing WiFi transmissions between
the WiFi AP and clients (including the client with SenCom).
SenCom measures the CSI from the sniffed packets and de-
rives the environment dynamics for various sensing tasks
based on that. In such a way, there is no disruption to any of
the ongoing WiFi communication flows between the AP and
clients.
Specifically, we perform an in-depth analysis of differ-

ent MIMO transmission modes and derive a transformation
formula that transforms the CSI collected from various trans-
mission modes into a unified form. Agnostic sensing appli-
cations can thus be performed with the unified CSI without
knowing the configuration particulars of each WiFi trans-
mission flow (which is WiFi AP/client-specific and often
unknown to the sniffers). A compensation formula is derived
to reconstruct the potential beamforming steering matrix
and based on its inverse to suppress the impact of beam-
forming. In order to address uneven WiFi transmissions in
time, we devise a fitting-resampling scheme to obtain CSI
samples with consistent dimensionality, which benefits map-
ping and model training of upper-layer sensing applications.
We further investigate the trade-off between the sensing
and communication performance and inject active probing
packets (i.e., incentive packets) with inadequate normal WiFi
traffic, while minimizing its impact on the communication.
We implement a prototype of SenCom with commercial

off-the-shelf (COTS) 802.11ac WiFi devices and conduct real-
world experiments with 15 human participants in three dif-
ferent test environments. The experimental results show that

Figure 2: Comparing traditional WiFi sensing with our
ISAC solution-SenCom.

SenCom provides competent support to various sensing tasks
with quality and sufficient CSI. After implementing SenCom,
the throughput and delay of the communication system only
drop by ∼2%. Furthermore, reproducing two existing WiFi
sensing applications demonstrates 94.4% accuracy for activ-
ity recognition and an error rate of 1.6% for step counting
when applying SenCom to support ISAC.

In summary, our contributions are as follows: ❶ We pro-
pose SenCom, the first practical WiFi ISAC system that can be
seamlessly integrated into existing communication systems
to enable various sensing applications. SenCom can be imple-
mentedwithoutmodifying any existingWiFi communication
standards, devices, or settings. ❷ To obtain qualified CSI and
suppress the impact of conventional communication designs,
SenCom embeds a CSI calibration method that includes a
transformation formula to unify the CSI and a compensation
formula to restrain the influence of beamforming. To obtain
sufficient CSI, SenCom adopts a fitting-resampling scheme to
support upper-layer sensing applications, as well as an incen-
tive strategy to elicit compensation probing packets where
a closed-form incentive rate is derived to balance sensing
and communication performance. ❸ We build a prototype
of SenCom and conduct real-world experiments on it. The
experimental results demonstrate that SenCom significantly
improves the quantity and quality of the CSI collected in a
communication context, while hardly impacting the com-
munication throughput and latency. Case studies on real
sensing applications show that SenCom performs well in
various sensing tasks.

2 BACKGROUND AND PROBLEM
STATEMENT

2.1 Traditional WiFi Sensing
WiFi sensing has been extensively studied for many years.
A conventional WiFi sensing system employs a pair of
transceivers to probe environmental changes, as shown in
Fig. 2(a). This is an active sensing manner, where the trans-
mitter only transmits pre-designed probing packets to the
receiver at a constant transmission rate. The entire sens-
ing system is isolated from the communication function. To
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Figure 3: Signal transmission procedure. ‘TS’ represents the training symbol vector.

implement the sensing system in an environment, two ad-
ditional and exclusive transceivers must be deployed as the
transmitter and receiver, respectively. To avoid impacting the
communication system already present in this environment,
the sensing system must use an extra frequency band that is
different from the communication system. As a result, the
implementation of a traditionalWiFi sensing system not only
incurs large hardware overhead but also wastes spectrum
resources.
In contrast, SenCom combines both passive and active

sensing techniques. The former enables SenCom to sniff and
make full use of the off-the-shelf packets from existing com-
munication systems (e.g., WiFi APs), while the latter helps
SenCom obtain sufficient sensing information. As shown
in Fig.2(b), our approach does not introduce any extra hard-
ware overhead. Furthermore, since the sensing channel and
the communication channel share the same frequency band,
SenCom also halves the consumption of spectrum resources
compared to the traditional solution.

2.2 Problem and Challenge
In this part, we explain the challenges in achieving our pro-
posal, ISAC, in a practical communication context. We start
by reviewing the data transmission procedure of the 802.11ac
Wave 1 standard [6], which has been widely adopted in ex-
isting WiFi systems. This procedure utilizes the MIMO tech-
nique to enable simultaneous transmissions of multiple data
streams (i.e., space-time streams (STSs) [6]) between theWiFi
AP and the client via multiple antennas2, as shown in Fig. 3.
To eliminate the unknown channel effect and ensure correct
decoding at the client, each data stream transmitted from the
AP has its own training symbol vector, which is utilized for
measuring CSI and channel equalization. All training symbol
vectors of 𝑁𝑆𝑇𝑆 STSs make up a training symbol matrix. Sen-
Com passively measures the CSI based on the sniffed training
symbol matrix. Specifically, before being transmitted by the
antennas, the training symbol matrix needs to go through
three main processes. (i) Potentially, for beamforming and
directional transmission, the training symbol matrix first
passes the steering matrix. (ii) The number of data streams
may be unequal to that of transmitting antennas. Thus, a

2We use data stream and STS interchangeably throughout the paper.

mappingmatrix is needed for mapping the𝑁𝑆𝑇𝑆 data streams
to 𝑁𝑇𝑋 transmitting chains for subsequent transmission. (iii)
To avoid inter-code interference, orthogonal frequency divi-
sion multiplexing (OFDM) modulation [68] divides wireless
bandwidth into 𝐾 subcarriers for parallel transmission. Let
S𝑘,𝑁𝑆𝑇𝑆

∈ C𝑁𝑆𝑇𝑆×𝑁𝑆𝑇𝑆 denote the training symbol matrix of
𝑁𝑆𝑇𝑆 STSs for subcarrier 𝑘 , where each row of S𝑘,𝑁𝑆𝑇𝑆

corre-
sponds to the training symbol vector for each data stream
and C is the set of complex numbers. The final transmitted
signal at the WiFi AP for subcarrier 𝑘 can be expressed by:

X𝑘,𝑁𝑆𝑇𝑆
= Q𝑘,𝑁𝑆𝑇𝑆

V𝑘,𝑁𝑆𝑇𝑆
S𝑘,𝑁𝑆𝑇𝑆

, (1)

where Q𝑘,𝑁𝑆𝑇𝑆
∈ C𝑁𝑇𝑋×𝑁𝑆𝑇𝑆 represents the mapping matrix

andV𝑘,𝑁𝑆𝑇𝑆
∈ C𝑁𝑆𝑇𝑆×𝑁𝑆𝑇𝑆 denotes the steering matrix for po-

tential beamforming. When 𝑁𝑆𝑇𝑆 = 1, the transmitter works
in the diversity mode; otherwise, the transmitter works in
the multiplexing mode.
After undergoing the physical-world wireless channel,

denoted by H𝑘 ∈ C𝑁𝑅𝑋×𝑁𝑇𝑋 for subcarrier 𝑘 , and OFDM
demodulation, the signal sniffed at SenCom is:

Y𝑘 =H𝑘X𝑘,𝑁𝑆𝑇𝑆
+ N0 = H𝑘Q𝑘,𝑁𝑆𝑇𝑆

V𝑘,𝑁𝑆𝑇𝑆
S𝑘,𝑁𝑆𝑇𝑆

+ N0, (2)

where N0 ∈ C𝑁𝑅𝑋×𝑁𝑆𝑇𝑆 is the Gaussian white noise with
𝑁𝑅𝑋 being the number of the receiving antennas. As shown
in Fig. 3, SenCom uses the public training symbol matrix to
measure CSI from Y𝑘 . As SenCom is not aware of the config-
urations of transmitting antennas at the AP side, in its view,
the received signal at each receiving antenna is a superim-
posed signal as if it came through a steered wireless channel
from a “virtual antenna”. The CSI measured at SenCom can
thus be expressed as:

G𝑘,𝑁𝑆𝑇𝑆
= H𝑘Q𝑘,𝑁𝑆𝑇𝑆

V𝑘,𝑁𝑆𝑇𝑆
. (3)

G𝑘,𝑁𝑆𝑇𝑆
describes the channel between the virtual antennas

and receiving antennas at SenCom, and is affected by the
MIMO and beamforming techniques. Therefore, it is different
from the physical-world CSI H𝑘 that describes the channel
between the transmitting antennas and receiving antennas.
Challenge 1-Qualified CSI. As SenCom passively sniffs the
WiFi traffic between the AP and clients, it has no knowledge
of the MIMO and beamforming configurations used on the
AP side. This raises two problems. First, the AP could operate
in either the diversity or multiplexing mode based on the
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Figure 4: Architecture of SenCom.

client’s demands, and this mode switch is unpredictable for
a passive monitor like SenCom. Thus, SenCom does not know
which mode the AP is working in. Unfortunately, the CSI
collected under different modes is different even though the
real environment does not change (based on Eq. 3), resulting
in that the sensing model established in one mode cannot
perform adequately in another. So, the sensing model of which
mode should be used is agnostic to SenCom. On the other
hand, the beamforming leads to directional transmission,
which may weaken the signal towards the sensing target and
thus impair the SNR of the collected CSI in deriving accurate
sensing results. SenCom has to compensate for such an effect
in its design.
Challenge 2-Sufficient CSI. WiFi sensing necessitates a
sufficient amount of CSI related to the sensing target. Tra-
ditional WiFi sensing systems achieve this by configuring
the AP to send probing packets at even and short time inter-
vals [82] (usually less than 20 ms). In the considered ISAC
practice, however, the transmitter (e.g., AP) sends data pack-
ets based only on the communication needs of the connected
clients. The clients may require only intermittent downlink
traffic, which is unevenly distributed and may be inadequate
from time to time. Meanwhile, sensing only depends on bea-
con packets is impractical as the interval between beacon
packets is typically set to 100 ms in existing WiFi systems,
which is too large to support many sensing applications.
SenCom has to adapt to practical WiFi systems, transform
the sampled CSI into the evenly-distributed one, and trigger
extra probing packets when necessary.

3 SYSTEM OVERVIEW
As shown in Fig. 4, SenCom collects CSI of the wireless
channel from the AP by sniffing its transmissions to var-
ious clients. The operation of SenCom is composed of two
primary phases: mapping establishment phase and sensing
phase.

In mapping establishment phase, SenCom performs pre-
calibration for CSI and establishes a mapping relationship
between the CSI and sensing objective. Specifically, in CSI
calibration, SenCom needs to collect the CSI of two modes
by accessing the AP. Then, based on the collected CSI, a
key transformation matrix for unifying CSI is figured out.
Afterwards, SenCom performs a series of potential prepro-
cessing like fitting-resampling on the calibrated CSI to sup-
port upper-layer applications. An application can be real-
ized by establishing a mapping relationship (modeling-based,
learning-based, or hybrid [53]) between the CSI and the sens-
ing objective.
In sensing phase, SenCom performs sensing tasks with

the pre-established mapping relationship, during which our
incentive strategy keeps running to guarantee sufficient
CSI. Specifically, SenCom first collects the CSI samples and
the feedback on beamforming of the clients. With the pre-
acquired transformation formula and a compensation for-
mula for suppressing the impact of beamforming, the col-
lected CSI samples can be calibrated into a unified form.
The same preprocessing techniques used in the mapping
establishment phase are then applied to the CSI samples.
Since WiFi-based sensing is either classification-driven or
measurement-driven [53], the pre-processed CSI will be fed
into the mapping relationship to perform classification or
measurement tasks.

4 CSI CALIBRATION
This section presents a CSI calibration method aimed at
mitigating the negative effects of particular communication
designs, such as MIMO and beamforming, on the sensing
performance.

4.1 CSI Transformation
Having multiple transmitting antennas allows the AP to use
either the diversity mode or multiplexing mode to achieve
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Figure 5: CSI distribution under diversity mode is dif-
ferent from that under multiplexing mode. Our cali-
bration method can unify the CSI distribution.
specific communication purposes. This brings the first chal-
lenge introduced in Section 1. In this part, we first review
the equation of CSI in Eq. 3 to figure out why this chal-
lenge arises. Without loss of generality, to make it easier to
understand, we take a two-antenna AP as an example and
consider that SenCom has one receiving antenna. Then, we
introduce the difference between the CSI of the two modes
and show how to transform the CSI of the multiplexing mode
to that of the diversity mode. Note that we do not consider
the beamforming here and leave it to the next part.

4.1.1 CSI Discrepancy Between Two Modes. In the diver-
sity mode, there is only one data stream (𝑁𝑆𝑇𝑆 = 1). It hap-
pens when the client has only one antenna or the client
needs stability instead of high throughput. Only one train-
ing symbol 𝑠𝑘 is allocated to the data stream for subcar-
rier 𝑘 , that is, S𝑘,𝑁𝑆𝑇𝑆

in Fig. 3 becomes 𝑠𝑘 when 𝑁𝑆𝑇𝑆 = 1.
Then, the training symbol is mapped into two transmitting
chains with a mapping matrix Q𝑘,1 = [𝑞𝑘,1, 𝑞𝑘,2]𝑇 . The sym-
bols in these two transmitting chains are 𝑥𝑘,1 = 𝑞𝑘,1𝑠𝑘 and
𝑥𝑘,2 = 𝑞𝑘,2𝑠𝑘 , respectively. After going through the wireless
channel h𝑘 = [ℎ𝑘,1, ℎ𝑘,2] between the AP and SenCom, the re-
ceived signal at SenCom is 𝑦𝑘 . In this case, SenCom can only
‘see’ one virtual transmitting antenna instead of two real
ones, because the AP only sends one training symbol and
the signals from two real transmitting antennas are superim-
posed. The measured CSI between the virtual transmitting
antenna and the receiving antenna is:

𝑔𝑘,1 = h𝑘Q𝑘,1. (4)

In this mode, the physical-world CSI h𝑘 between the AP and
SenCom is transformed into 𝑔𝑘,1.

In the multiplexing mode, the transmitting process is sim-
ilar to that in the diversity mode. The differences lie in the
training symbol and mapping matrix. Two training symbol
vectors are used in the multiplexing mode instead of one
training symbol. Meanwhile, the mapping matrix used in the
diversity mode is Q𝑘,1 = [𝑞𝑘,1, 𝑞𝑘,2]𝑇 , but what used in the
multiplexing mode becomes:

Q𝑘,2 =

[
𝑞𝑘,1,1 𝑞𝑘,1,2
𝑞𝑘,2,1 𝑞𝑘,2,2

]
.

Thus, in the multiplexing mode, after undergoing the wire-
less channel, SenCom can ‘see’ two virtual transmitting an-
tennas. The measured CSI between the virtual transmitting
antennas and the receiving antenna is:

g𝑘,2 = h𝑘Q𝑘,2 . (5)

Conclusion: From Eq. 4 and 5, we can find that the CSI
collected under different modes can vary even when the
environment remains unchanged. Particularly, we can get
one CSI stream in the diversity mode but two in the multi-
plexing mode. To illustrate such differences, we collect two
batches of CSI samples under these two modes in a static
environment and reduce CSI’s dimensionality with t-SNE
algorithm [69]. The resulting CSI distributions are shown
in Fig. 5. It can be seen that the CSI of the diversity mode
is far from that of the multiplexing mode. Meanwhile, the
two CSI streams of the multiplexing mode also scatter in
different clusters. These two modes demonstrate three dis-
tinct CSI distributions, making it challenging to establish
a mapping relationship that works well in both modes. A
straightforward solution is to respectively establish three
different mapping relationships for the two modes, allow-
ing SenCom to choose the most suitable one according to
the AP’s working mode. However, it would require direct
communication and coordination between SenCom and the
AP, which would undermine our goal of achieving sensing
without compromising communication performance.

4.1.2 CSI Transformation From Multiplexing to Diversity. To
achieve accurate sensing without comprising the commu-
nication performance, we seek to unify the CSI of the two
modes into a single distribution, such that only one mapping
relationship is needed for sensing. For doing so, there are two
potential ways: i) Both extracting physical-world CSI from
the diversity mode and multiplexing mode. ii) Transforming
the CSI of the multiplexing mode into that of the diversity
mode. However, in the diversity mode, the physical world
CSI h𝑘 cannot be recovered from 𝑔𝑘,1 via Eq. 4, as there are
infinite possible combinations for h𝑘 . Thus, CSI transforma-
tion from the multiplexing mode to the diversity mode is the
sole solution.

Such a transformation can be achieved in two steps: (i) re-
covering the physical-world CSI from the multiplexing mode
by multiplying Q−1

𝑘,2 in both sides of Eq. 5; (ii) transforming
the recovered CSI into the diversity mode using Eq. 4. We
can derive the transformation formula as:

𝑔𝑘,1 = g𝑘,2P𝑘 , (6)

where P𝑘 ≜ Q−1
𝑘,2Q𝑘,1 is the transformation matrix from the

multiplexing mode to the diversity mode.
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Now, the challenge turns into how to get P𝑘 . In fact, P𝑘 is
unknown to SenCom and it cannot be obtained through sim-
ple theoretical derivations. To address this issue, we heuristi-
cally take advantage of real CSI and propose an optimization-
based approach to estimateP𝑘 . To be specific, we first noticed
that the CSI is invariable during the coherence time [76]. Un-
der this property, as long as in the coherence time, the CSI
collected in the diversity mode is consistent with that col-
lected in the multiplexing mode. It is potential to leverage
such consistency to estimate P𝑘 . In particular, we place a
two-antenna client (e.g., phone) and SenCom near the AP
to access and ‘ping’ the AP in the coherence time, respec-
tively. Since the APworks in themultiplexing/diversity mode
when communicating with the client/SenCom, we can col-
lect CSI samples of the two modes. To further make the
estimated P𝑘 more accurate, we can collect several groups
of CSI samples in different environments. Let

{
𝑔
(𝑖,1)
𝑘,1 , g

(𝑖,2)
𝑘,2

}
and 𝐼 denote the 𝑖-th CSI sample pair and the number of
pairs, respectively. Thanks to CSI’s invariability in the co-
herence time, g(𝑖,2)

𝑘,2 P𝑘 (from the multiplexing mode) is equal
to 𝑔 (𝑖,1)

𝑘,1 (from the diversity mode) in theory, so that we can
calculate P𝑘 with the least squares optimization problem:

min
P𝑘

∑
𝑖

������𝑔 (𝑖,1)
𝑘,1 − g(𝑖,2)

𝑘,2 P𝑘

������2.
Nonetheless, due to the phase error Δ𝛾𝑖 brought by the re-

ceiver of SenCom and varied channel gain, 𝑔 (𝑖,1)
𝑘,1 , and g(𝑖,2)

𝑘,2 P𝑘

are not exactly the same in practice. Based on the previous
study [75], phase variation between two CSI samples dur-
ing the coherence time is caused by the packet boundary
detection uncertainty and Δ𝛾𝑖 follows a Gaussian distribu-
tion with zero mean. Taking into account the phase error
and varied channel gain, we have the following relation-
ship between the CSI samples of the two modes: 𝛼𝑖𝑔 (𝑖,1)𝑘,1 =

g(𝑖,2)
𝑘,2 P𝑘 , where 𝛼𝑖 = |𝛼𝑖 |𝑒 𝑗Δ𝛾𝑖 and |𝛼𝑖 | describes the varia-
tion of channel gain with E

{
|𝛼𝑖 |2

}
= 1. P𝑘 can be estimated

by min
𝛼𝑖 ,P𝑘

∑
𝑖

������𝛼𝑖𝑔 (𝑖,1)𝑘,1 − g(𝑖,2)
𝑘,2 P𝑘

������2. Thereafter, we introduce a
fractional form to prevent 𝛼𝑖 and P𝑘 from being zero. The
optimization problem can be rewritten as:

min
𝛼𝑖 ,P̂𝑘

∑︁
𝑖

������𝛼𝑖𝑔 (𝑖,1)𝑘,1 − g(𝑖,2)
𝑘,2 P̂𝑘

������2 , s.t. P̂𝑘 (1, 1) = 1, (7a)

which is convex since it is a quadratic optimization problem
and can be solved with existing solvers, such as CVX [23].
After obtaining the optimal solution to the problem in

Eq. 7, we need to obtain 𝑃𝑘 (1, 1) for calculating P𝑘 . Recalling
that the channel gain variation follows E

{
|𝛼𝑖 |2

}
= 1, we can

estimate 𝑃𝑘 (1, 1) as:

𝑃𝑘 (1, 1) =
√︂

1
𝐼

∑𝐼
𝑖=1 |𝛼𝑖 |2𝑒−𝑗

1
𝐼

∑𝐼
𝑖=1 ∠𝛼𝑖 , (8)

Figure 6: Transmission procedure with beamforming.

where ∠𝛼𝑖 represents the phase of 𝛼𝑖 . Ultimately, the trans-
formation matrix P𝑘 can be estimated by P𝑘 = 𝑃𝑘 (1, 1)P̂𝑘 .
In this way, all the collected CSI can be unified into one
mode/distribution using estimated P𝑘 . As shown in Fig. 5,
the CSI transformed from the multiplexing mode and that of
the diversity mode lies in the same cluster. This demonstrates
that they have the same distribution and our transformation
is very effective.Note that, sinceQ𝑘,1 andQ𝑘,2 are independent
of the wireless channel and only related to the AP, the transfor-
mation matrix P𝑘 only depends on the AP also. Therefore, P𝑘
can be permanently used across time and environments once it
was estimated.

4.2 Compensation for Beamforming
Principle of beamforming. This part focuses on beam-
forming, which is utilized in WiFi 802.11ac/ax to enhance
communication throughput. Figure 6 depicts The transmis-
sion procedure with beamforming, where the AP sends a null
data packet (NDP) to the client prior to data transmission.
The client measures the CSI, denoted by H𝑐

𝑘
for subcarrier

𝑘 , and feeds it back to the AP.3 The AP utilizes the received
feedback to create a steering matrix V𝑘,𝑁𝑆𝑇𝑆

to facilitate the
directional transmission towards the client. However, from
the perspective of SenCom, the power of the signal passing
through the sensing area may become much weaker than that
of other areas, leading to a reduction in the SNR of the CSI.
Thus, we need to suppress the impact of beamforming in the
following.
Suppressing the impact of beamforming. According to
Eq. 3, we need to eliminate the steering matrix V𝑘,𝑁𝑆𝑇𝑆

in
the collected CSI by the following compensation formula:

G𝑘,𝑁𝑆𝑇𝑆
V−1
𝑘,𝑁𝑆𝑇𝑆

= H𝑘Q𝑘,𝑁𝑆𝑇𝑆
. (9)

3Here, we mainly consider the cases where the sniffed packets are from
the clients without implementing SenCom, as the obtained H𝑐

𝑘
does not

describe the real channel between the AP and SenCom. If the sniffed packets
are from the client that SenCom is implemented on, the obtainedH𝑐

𝑘
can be

directly used for sensing and there is no need to listen to the feedback of
NDP.
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We cannot directly apply this formula because the steering
matrix V𝑘,𝑁𝑆𝑇𝑆

is unknown to a passive monitor like Sen-
Com. Fortunately, SenCom can listen to the feedback of NDP,
i.e., H𝑐

𝑘
, as it is used for creating V𝑘,𝑁𝑆𝑇𝑆

. Without loss of
generality, V𝑘,𝑁𝑆𝑇𝑆

can be derived from H𝑐
𝑘
suppose that we

know the structuring method of the adopted beamforming
scheme. Here, we assume that the AP adopts zero-forcing
(ZF) beamforming [80], as it is one of the most popular
ones [58]. Then, after sniffing the CSI measured by the client
(i.e., H𝑐

𝑘
), the steering matrix can be calculated at SenCom

by: V𝑘,𝑁𝑆𝑇𝑆
= ((H𝑐

𝑘
)𝐻H𝑐

𝑘
)−1 (H𝑐

𝑘
)𝐻 , where (·)𝐻 is the oper-

ation of conjugate transpose. With the calculated V𝑘,𝑁𝑆𝑇𝑆
,

SenCom can effectively suppress the impact of beamforming
with the compensation formula (Eq. 9). Under the premise
that SenCom has the knowledge of the beamforming strategy
employed by the AP, the above compensation method can
be easily extended to other beamforming schemes by simply
replacing the steering matrix. For example, for the singular
value decomposition (SVD) beamforming [68], the steering
matrix can be given by V𝑘 with the SVD of the CSI measured
by the client (i.e., H𝑐

𝑘
) being H𝑐

𝑘
= U𝑘Σ𝑘V𝑘 .

5 UNIFYING CSI SAMPLING
In traditional WiFi sensing (Sec. 2.1), packets are transmitted
at a consistent and evenly-spaced interval, ensuring that
the sampled CSI’s dimensionality is consistent for upper-
layer sensing applications. But it is hard to guarantee such
evenness in communication traffic with varying downlink
data demands. To overcome this problem, we devise a fitting-
resampling scheme to maintain the uniformity of CSI scat-
ters in the time domain. In cases the normal communication
packets are insufficient, we suggest an incentive strategy
to encourage the AP to send compensation packets. In its
design, we model the trade-off between the sensing and com-
munication performance, ensuring that SenCom can obtain
adequate packets without significantly degrading the com-
munication channel.

5.1 Fitting and Resampling
When clients require high communication demands, SenCom
can obtain sufficient packets for sensing. However, since the
communication packets are not evenly distributed over time,
the number of packets collected in a fixed-length time period
is variable. This variability makes it difficult to ensure that
input CSI samples have consistent dimensionality, which is
crucial for upper-layer applications of many sensing systems,
especially those employing learning models. For example, in
a WiFi-based sign language recognition system SignFi [54],
the default dimensionality of the CSI amplitude fed into the
convolutional neural network is fixed as (3, 30, 200), where
3×30 is the number of subcarriers and the last dimension
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Figure 7: Cubic spline fitting results.

means evenly collecting 200 packets for each CSI sample.
For this purpose, we propose to fit the variation trace of
each subcarrier in the CSI sample, and then resample the
fitted function at an equal interval. Specifically, we opt to
perform cubic spline fitting [10], because we observed that
the variation trace of each subcarrier is akin to the splicing
of multiple cubic functions in the time domain (i.e., cubic
function in each small time window). The objective of cubic
splines is to derive a third-order polynomial for each CSI in-
terval, which can be formulated as 𝑓𝑖 (𝑡) = 𝑎𝑖𝑡3+𝑏𝑖𝑡2+𝑐𝑖𝑡 +𝑑𝑖 ,
where 𝑡 is timestamp, and 𝑖 means the 𝑖𝑡ℎ CSI interval. 𝑎𝑖 ,
𝑏𝑖 , 𝑐𝑖 , and 𝑑𝑖 are four parameters that require evaluation.
The fitting results of four subcarriers are shown in Fig. 7. It
can be observed that the fitted curves (Figs. 7(b) and 7(d))
closely resemble the real variation traces of the subcarriers
(Figs. 7(a) and 7(c)). Therefore, cubic spline curves can pre-
cisely fit the sensing information recorded by CSI. After that,
we sample at an equal interval on spline functions. In this
way, SenCom is able to maintain a stable sampling rate to pro-
vide dimensionality-consistent CSI samples for upper-layer
applications.

5.2 Incentive Strategy
In situations where clients have no communication demands,
there is no ongoing packet for SenCom to sample the CSI.
To address this issue, we design an incentive strategy based
on queuing theory [63]. This strategy enables SenCom to
alternate between two states to obtain sufficient incentive
packets (i.e., probing packets), while hardly compromising
the communication performance.
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State definition.We assume that the arrival process of com-
munication packets at the AP follows the Poisson process4
with a rate 𝜆𝑐 [𝑡]5 (in packets/s) at time index 𝑡 . Let 𝐹 𝑟𝑒 (in
packets/s) denote the required sensing frequency, i.e., the
required CSI sampling rate. By comparing 𝐹 𝑟𝑒 with 𝜆𝑐 [𝑡], we
have the following two states in the incentive strategy. (i)
Silent state: it refers to the state when 𝜆𝑐 [𝑡] ≥ 𝐹 𝑟𝑒 . In this
state, the AP does not need to transmit incentive packets and
SenCom only estimates CSI from communication packets. (ii)
Incentive state: it refers to the state when 𝜆𝑐 [𝑡] < 𝐹 𝑟𝑒 . In this
state, SenCom drives the AP to transmit incentive packets
with an incentive rate 𝜆𝑖 [𝑡] and collects CSI simultaneously.
Incorporating communication loss. Next, we only need
to consider the performance in the incentive state as trans-
mitting incentive packets may affect the communication
performance. We do not want to impair any ongoing commu-
nication traffic when injecting extra probing packets during
the incentive state. To be specific, the sensing performance
can be described with the CSI sampling rate, i.e., 𝜆𝑐 [𝑡] +𝜆𝑖 [𝑡],
and the communication performance can be analyzed with
queueing theory. The communication latency without incen-
tive packets is given by:

𝜏𝑐 [𝑡] =
𝜆𝑐 [𝑡]E

{
𝑊 2}

2 (1 − 𝜆𝑐 [𝑡]E {𝑊 }) + E {𝑊 } , (10)

where𝑊 is the transmission latency and E {·} is the oper-
ation of expectation. With 𝜆𝑐 [𝑡]E {𝑊 } < 1, every packet is
delivered successfully and the corresponding throughput is
the product of the rate 𝜆𝑐 [𝑡] and the data size per packet. By
contrast, with incentive packets, the communication latency
becomes:

𝜏𝑐,𝑖 [𝑡] =
(
𝜆𝑐 [𝑡] + 𝜆𝑖 [𝑡]

)
E

{
𝑊 2}

2 (1 − (𝜆𝑐 [𝑡] + 𝜆𝑖 [𝑡]) E {𝑊 }) + E {𝑊 } . (11)

Moreover, when
(
𝜆𝑐 [𝑡] + 𝜆𝑖 [𝑡]

)
E {𝑊 } < 1, the throughput

keeps unchanged. Therefore, we only consider the latency
loss, as Δ𝜏 [𝑡] = 𝜏𝑐,𝑖 [𝑡] − 𝜏𝑐 [𝑡].
Balancing sensing and communication. To enable sens-
ing without hurting communication, we formulate the fol-
lowing optimization problem:

max
𝜆𝑖 [𝑡 ]

𝛽
(
𝜆𝑐 [𝑡] + 𝜆𝑖 [𝑡]

)
− (1 − 𝛽) Δ𝜏 [𝑡], (12a)

s.t.
(
𝜆𝑐 [𝑡] + 𝜆𝑖 [𝑡]

)
E {𝑊 } ≤ 1 − 𝜖, (12b)

𝜆𝑖 [𝑡] ≥ 0, (12c)

where 𝛽 denotes the weight and 𝜖 > 0 denotes the tolerance.
The objective function in Eq. 12a describes the trade-off
between sensing performance and communication latency.
4In practice, most of the communication traffic follows the Poisson pro-
cess [19].
5𝜆𝑐 [𝑡 ] can be obtained by the forecasting method, such as the time series
model and long short-term memory (LSTM) [16].

Silent	state
Incentive
state

Initialization

①

②

③

④

Figure 8: Incentive strategy.
The constraint in Eq. 12b ensures that the communication
throughput is not affected by the incentive packets. It is
easy to prove the convexity of the above problem and the
corresponding optimal solution is given by:

𝜆𝑖,★[𝑡]=
[

1
E {𝑊 }

(
1−

√︄
1−𝛽
2𝛽
E {𝑊 2}

)
−𝜆𝑐 [𝑡]

] 1−𝜖
E{𝑊 }−𝜆𝑐 [𝑡 ]

0

, (13)

where [𝑥]𝐵
𝐴
= min{𝐵,max{𝑥,𝐴}}. From Eq. 13, we can find

that the incentive rate 𝜆𝑖 [𝑡] is affected by 𝛽 . If we prefer
better sensing performance than less communication loss,
we can empirically set a high 𝛽 to get a large incentive rate.
Overall view. The optimal incentive rate in the incentive
state is now clear. As shown in Fig. 8. The incentive strategy
contains two states, and the transition conditions between
the two states are determined by the arrival rate of communi-
cation packets 𝜆𝑐 [𝑡] and the required sensing frequency 𝐹 𝑟𝑒 .
If 𝜆𝑐 [𝑡] ≥ 𝐹 𝑟𝑒 , the next state is the silent state; otherwise, the
next state is the incentive state. In the silent state, SenCom
collects CSI by listening to communication packets. In the
incentive state, SenCom drives the AP to transmit incentive
packets with rate 𝜆𝑖 [𝑡] given in Eq. 13. This design effec-
tively address the issue of CSI insufficiency while keeping
communication loss very low.

6 EVALUATION
This section presents the real-world implementation and
details the performance of SenCom in terms of sensing and
communication.

6.1 Implementation
As shown in Fig. 9, we implement SenCom on a standalone
sensing client comprising a CSI monitor, a packet monitor,
and an intelligent unit. Not using an off-the-shelf client to
embark SenCom is indeed an engineering compromise. Even
though most existing WiFi network interface cards (NICs)
on the clients are able to sniff packets and measure the CSI,
the NIC manufacturers do not provide corresponding per-
missions as these abilities are useless for upper-layer non-
sensing applications. Nonetheless, it is noteworthy that NICs
are technically capable of performing all the functions re-
quired by SenCom, and it is technically trivial to modify
SenCom to work with a single WiFi NIC should the CSI in-
formation is internally accessible from the NIC. We believe
that our work will encourage manufacturers to open the
interfaces for these abilities. In our SenCom prototype, the
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Figure 9: Prototype of SenCom.

AP Target SenCom Laptop Phone Desktop computer

(a) Lab (b) Home (c) Office

Figure 10: Three environments for SenCom evaluation.

CSI monitor measures CSI from received packets, while the
packet monitor is responsible for receiving the feedback of
beamforming. The intelligent unit wirelessly connects to an
AP and performs incentive strategy, CSI calibration, fitting,
resampling, and finally gets the sensing result. More specifi-
cally, we implement SenCom on a Raspberry Pi 4B connected
to a TP-LINK WDN5200H (a Wireless USB WiFi Adapter)
and an ASUS RT-AC86U Router. The Raspberry Pi 4B works
as the intelligent unit, and the TP-LINK WDN5200H is con-
figured in the monitor mode working as the packet monitor.
The ASUS RT-AC86U Router installed with the Nexmon CSI
tool [24] is used as the CSI monitor. Note that we have mod-
ified Nexmon CSI tool so that it can distinguish whether
beamforming is utilized in the packet while logging CSI
from the received packet.

We conduct experiments in three different environments,
including a lab, a home, and an office, as shown in Fig. 10.
To mimic a real communication scenario, a Mi Router Mini6
and three clients are included. The router works as an AP
with a bandwidth of 20 MHz. The clients include a laptop
with a one-antenna wireless adapter (TP-LINK WDN5200H),
a phone (Google Pixel 4) with two antennas, and a desktop
computer with a three-antenna network interface card (TP-
LINK TL-WDN7280). In our default communication context,
the Google Pixel 4 phone is connected to the AP and plays
online videos.
We focus on the standard of 802.11ac Wave 1 since it is

one of the most pervasive WiFi standards in existing WiFi
devices. In this standard, OFDM, MIMO, packet aggrega-
tion, beamforming, and other techniques are adopted to en-
hance channel efficiency. Our work can also be easily ex-
tended to the subsequent WiFi standards, i.e., 802.11ac Wave
2 and 802.11ax, where orthogonal frequency division multi-
ple access (OFDMA) and multi-user multiple-input multiple-
output (MU-MIMO) are adopted for high communication
performance. With the OFDMA, the AP can allocate dif-
ferent subcarriers to different users for simultaneous trans-
mission. OFDMA does not affect sensing performance as it
does not influence the collected CSI at SenCom. As for the
MU-MIMO, it is an extended version of the beamforming

6https://files.miot-global.com/files/mini_wifi_router/Mi%
20routerminiEN.pdf

mentioned above and the steering matrix is constructed for
multi-user simultaneous transmission by sniffing the feed-
back of NDP. Therefore, the proposed CSI calibration method
for beamforming can be easily extended to deal with the im-
pact brought by MU-MIMO as well.

6.2 Sensing Performance
In this part, we measure the sensing performance of Sen-
Com. We conduct two types of experiments to verify the
effectiveness of the CSI calibration and incentive strategy,
respectively. These experiments inspect both the quality and
quantity of the CSI collected at SenCom.

6.2.1 Experiment Setup and Metric. Experiment setup: To
test the performance of the CSI calibration, we collect the
CSI samples during the coherence time and compare the cal-
ibrated CSI of 𝑁𝑆𝑇𝑆 ≥ 2 with the collected CSI of 𝑁𝑆𝑇𝑆 = 1.
To test the performance of the incentive strategy, we ex-
pose SenCom to the real WiFi communication environment
and perform the incentive strategy. We adopt two baseline
schemes for comparison: traditional WiFi sensing introduced
in Section 2.1 (Active), and passive CSI collection without
calibration and incentive (Passive). In theory, Active sensing
can achieve the best sensing performance. Over 20,000 CSI
samples are collected during the experimental evaluation.
Metrics: For the CSI calibration, we adopt dynamic time
warping (DTW) [57] to measure the CSI difference between
the calibrated CSI of 𝑁𝑆𝑇𝑆 ≥ 2 and the collected CSI of
𝑁𝑆𝑇𝑆 = 1. It seeks the temporal alignment that minimizes
Euclidean distance between aligned series and the CSI differ-
ence is defined as the minimal Euclidean distance. A lower
CSI difference indicates lower deviations between the mea-
sured CSI from different modes, i.e., better performance of
CSI calibration. All CSI samples are normalized to eliminate
the effect of variation of channel gain. For the incentive strat-
egy, we adopt fill rate to quantify its performance, which
is defined as the probability of meeting the required CSI
sampling rate. It is calculated as the ratio of the number of
tests that meet the such requirement to the number of all
tests. The time window of each test is set to 0.3 s. Although
the expected CSI sampling rate is 100 packets/s, the sensing
requirement is set as 95 packets/s since there would be a loss
of packets even in active sensing.

https://files.miot-global.com/files/mini_wifi_router/Mi%20routerminiEN.pdf
https://files.miot-global.com/files/mini_wifi_router/Mi%20routerminiEN.pdf
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Table 1: Communication performance with different communication tasks.

Task Video Webpage Game Download
Metric Dropped rate Loading time Latency Loss rate Data rate

Without SenCom 1597/40477 614 ms 17 ms 0 % 88.68 Mbps
With SenCom 1613/40477 615 ms 17 ms 0 % 87.12 Mbps

6.2.2 Results. Effectiveness of CSI calibration: The cu-
mulative distribution function (CDF) of the CSI difference for
the three schemes is shown in Fig. 11. It can be seen that the
CSI difference of Passive sensing is much higher than that of
Active sensing, which indicates the low CSI quality issue due
to the alternation of WiFi communication modes. By using
the proposed CSI calibration method, the CSI difference of
SenCom is greatly reduced to the level of Active sensing,
without the need for active communication or coordination
with the AP. Further, we show the median of the CSI dif-
ference with different client’s antenna numbers in Fig. 12.
The CSI difference of SenCom reaches that of Active sensing,
which demonstrates that the CSI calibration can improve
the quality of CSI. Besides, the CSI differences of the three
schemes are almost the same when the antenna number is
1 because all packets are in the same communication mode.
We also show the median of the CSI difference in three envi-
ronments in Fig. 13. It can be found that the performance of
the CSI calibration is not affected by the environment.
Effectiveness of incentive strategy: The CDF of CSI sam-
pling rate is shown in Fig. 14. It can be found that the CSI
sampling rate of Active sensing is stable, that is, about 100
packets/s all the time. On the contrary, when the client is
playing an online video, the probability that the CSI sam-
pling rate is higher than 100 packets/s is around 30% and

the CSI sampling rate is less than 40 packets/s in most cases,
which cannot satisfy the sensing requirement at all times and
may lead to the missing of key sensing information. It can
be observed that the CSI sampling rate tends to exceed 100
packets/s with our proposed incentive strategy. In practical
daily life, however, people may perform a variety of tasks
on the Internet, such as visiting websites and playing online
games. The fill rate for four communication tasks (namely
video streaming, webpage surfing, online gaming, and down-
load) are shown in Fig. 15. SenCom gives almost the same
performance as that of Active sensing under different com-
munication tasks, which demonstrates its effectiveness. The
fill rate approaches 100% for the task of download as its com-
munication demands are frequent and stable. Meanwhile, the
medians of CSI sampling rate for the four communication
tasks are 20.0 packets/s, 13.3 packets/s, 30.0 packets/s, and
503.3 packets/s, respectively. The corresponding intervals
are 50.0 ms, 75.0 ms, 33.3 ms, and 2.0 ms, respectively. After
applying the incentive strategy, the medians of CSI sampling
rate for the four communication tasks are all higher than the
sensing requirement. In addition, we also test the incentive
strategy in three environments, as shown in Fig. 16. It can
be seen that the fill rates are similar and near 100%. This
indicates that the sensing requirement for sufficient CSI can
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be satisfied in different environments with our incentive
strategy.

6.3 Communication Performance
In this part, we measure the impact of SenCom on the normal
WiFi communication performance.

6.3.1 Experiment Setup and Metric. Experiment setup:We
test the communication performance in two ways. One is
to directly measure the communication performance with
the help of iperf7 between the AP and client. The other is to
measure the quality of experience (QoE) of the four afore-
mentioned communication tasks. The communication per-
formance is tested in a week randomly and the total time is
more than 10 hours. Average results are shown in this part.
Metrics: For the direct measurement, we adopt two metrics,
i.e., latency and throughput, to quantify the communication
performance. Latency describes the end-to-end delay be-
tween the AP and the client. Throughput is measured by the
rate of successfully delivered data between the client and
AP, which can be calculated as throughput = 𝜂𝜆𝑐𝑉 , where 𝜂
is the successful delivery rate, 𝜆𝑐 is the packet arrival rate,
and 𝑉 is the data size per packet. For the task of webpage
surfing, we utilize the loading time of the website to measure
the QoE. For video streaming, its QoE is represented by the
fluency of the video, i.e., dropped rate that is the number of
dropped frames to the total number of frames. As for online
gaming, we can use latency between the client and the game
server and loss rate of operations. For the download task, its
QoE is described by the data size delivered successfully per
unit time, i.e., data rate.

6.3.2 Results. We evaluate the latency and throughput with
different communication packet arrival rates. As shown in
Fig. 17, the communication latency with SenCom is almost
the same as that without SenCom. Especially, when the com-
munication packet arrival rate is no less than the required
CSI sampling rate, i.e., 𝜆𝑐 ≥ 100 packets/s, there is no need
to transmit incentive packets, and the latency thus is not
affected at all. When 𝜆𝑐 < 100 packets/s, the loss can be
reduced to a negligible level, i.e., less than 2%, by choosing
a proper weight (i.e., 𝛽 = 0.1). Meanwhile, according to the
experiment results, the successful delivery rate without Sen-
Com and with SenCom is 100%, indicating that SenCom does
not affect the throughput. Fig. 17 also shows the average CSI
sampling rate. With the incentive strategy, the CSI sampling
rate is maintained constantly higher than required. By con-
trast, without the incentive strategy, the CSI sampling rate
may fall short when the communication packet rate is low.

7https://iperf .fr/

The QoE of the four communication tasks is shown in
Tab. 1. It can be observed that SenCom almost has no in-
fluence on the QoE of the communication tasks. Even for
the download task that requires a very high data rate, the
communication traffic is hardly impacted by the incentive
strategy. Recalling that the required CSI sampling rate can
be guaranteed according to the results in Fig. 15. Hence, with
SenCom implemented in the communication system, suffi-
cient CSI can be obtained for sensing without influencing
ongoing communication traffic too much.

6.4 Case Study
We perform case studies to test SenComwith two real sensing
applications: fall detection and step counting.

6.4.1 Experiment Setup and Metric. Experiment setup:We
invite 15 volunteers (10 males and 5 females) aged from 19 to
29 to take part in the following twoWiFi sensing applications:
a classification application WiFall [73] and a measurement
application WiStep [78]. WiFall is a learning-based fall de-
tection system, which utilizes a random forest classifier to
recognize four activities including walking, sitting down,
standing up, and falling. WiStep is a modeling-based step
counting system that can measure the number of steps with
CSI samples. In each environment, five volunteers are re-
quested to perform sensing experiments. The required CSI
sampling rate is set to 100 packets/s. For each volunteer, we
collect at least 200 training CSI samples and 150 testing CSI
samples. We collect over 15,700 CSI samples for case studies.
All experiments are conducted by adhering to the approval
of our university’s Institutional Review Board.
Metrics. We use accuracy [73] to quantify the classification
performance for WiFall and error rate [78] to qualify the mea-
surement performance for WiStep. Accuracy is measured
by the percentage of correctly classified CSI samples, which
is defined as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑐𝑜𝑟

𝑁𝑎𝑙𝑙
, where 𝑁𝑐𝑜𝑟 and 𝑁𝑎𝑙𝑙 are the

number of all correctly classified CSI samples and the number
of all test samples, respectively. Error rate describes the dif-
ference between the estimated step count 𝑅𝑒 and the ground
truth value 𝑅𝑔, which is calculated by: 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = |𝑅𝑒−𝑅𝑔 |

𝑅𝑔
.

6.4.2 Results. Overall performance. We first derive the
activity recognition accuracy when supporting WiFall in
three environments. We compare SenCom with two schemes:
simply collecting CSI without fitting-resampling, and Ac-
tive sensing. The average accuracy of five persons in each
environment is recorded. The accuracy of the three environ-
ments is shown in Fig. 18. It can be found that the accuracy
of SenCom is higher than that without fitting-resampling.
Thus, our fitting-resamplingmethod can improve the activity
recognition accuracy. The accuracy of SenCom is comparable
to that of Active sensing, indicating that SenCom is qualified

https://iperf.fr/
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Figure 19: Error rates in
three environments.
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Figure 20: Effect of client’s
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accuracy.
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Figure 21: Effect of client’s
antenna number on error
rate.
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Figure 22: Effect of client
number on accuracy.
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Figure 23: Effect of client
number on error rate.
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Figure 24: Effect of client ac-
tivity on accuracy.
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Figure 25: Effect of client ac-
tivity on error rate.
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Figure 26: Effect of training
set size on accuracy.

for classification tasks. Meanwhile, the accuracy of SenCom
in lab, home, and office is 94.37%, 92.33%, and 91.93%, re-
spectively. The accuracy is high and similar, demonstrating
that SenCom performs well in different environments. The
small accuracy differences are likely to be induced by random
environmental noise. As for the step counting, we conduct
comparison experiments similar to the activity recognition.
The experimental results shown in Fig. 19 indicate that Sen-
Com’s average error rates in lab, home, and office are 1.8%,
1.6%, and 2.0%, respectively. Meanwhile, it can be observed
that our fitting-resampling method is also effective in mea-
surement tasks. More importantly, the error rate of SenCom
is comparable to that of Active sensing. The results suggest
that SenCom can achieve outstanding performance in all
WiFi-based sensing tasks, including both the classification
and measurement ones.
Effect of client’s antenna number: In this part, we use
three clients equipped with one, two, and three antennas to
explore the effect of the client’s antenna number. To show
the effectiveness of our CSI calibration method, we compare
SenCom with an alternative: without CSI calibration. The
experimental results of activity recognition and step count-
ing are shown in Fig. 20 and Fig. 21, respectively. It can be
seen that the performance when using one antenna is better
than that of using two or three antennas. This is reasonable
because SenCom does not need to execute CSI calibration
when the client has only one receiving antenna. The CSI
collected in this case is of higher quality. Meanwhile, the
performance of SenCom is better than that of the alterna-
tive, which means that our CSI calibration method is very
effective in improving the quality of CSI.

Effect of client number: In practice, multiple client de-
vices may co-exist in the same WiFi domain. In this case, the
transmitter is connected with multiple clients and transmits
packets to different clients across time. To explore the effect
of the client number, we conduct four experiments with four
conditions. The experimental results of activity recognition
and step counting are respectively displayed in Fig. 22 and
Fig. 23, where ‘1+ 2’ means that the transmitter is connected
with a one-antenna client and a two-antenna client, and so
forth. It can be observed that the performance of SenCom
with different conditions is good and very similar to each
other. This demonstrates the effectiveness of the CSI cali-
bration, and as a result, the varied number of clients hardly
affects the classification or measurement performance.
Effect of client activity: We also consider other commu-
nication traffic, i.e., online gaming, webpage surfing, and
download. Figure 24 and Fig. 25 depict the activity recog-
nition and step counting results when SenCom works with
the above different communication traffic, respectively. As
during download, the client has high communication de-
mands, we disable the signal incentive. In Fig. 24, it can be
found that online gaming can achieve the highest average
accuracy. This is reasonable because online gaming does not
initiate communication requests as frequently as other tasks.
Most CSI is extracted from incentive packets that do not
need to be calibrated, rendering better performance. But it
is noteworthy that SenCom still performs well (93.53% accu-
racy and 1.65% error rate) under the worst conditions (i.e.,
download) where all the packets are from the communica-
tion traffic. This further demonstrates the effectiveness of
our CSI calibration method.
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Effect of training set size: Since WiFall adopts a learning-
based method to achieve activity recognition, the size (i.e.,
the number of CSI samples) of the training set directly affects
the activity recognition result. To explore if SenCom can still
work well when the training set is small, we vary the number
of the training CSI samples of each class from 10 to 40 and
calculate the accuracy. Meanwhile, we compare SenComwith
an alternative: without fitting-resampling. It can be observed
from Fig. 26 that SenCom outperforms the alternative. When
the number of CSI samples of each activity is 40, the accuracy
reaches the highest. Nevertheless, the accuracy is still high
(85%+) when only 10 CSI samples are collected for each class,
which indicates that SenCom is insensitive to the training
data size.

7 RELATEDWORK
ISAC: Existing ISAC research mainly focuses on devising
a special PHY design that is suitable for both communica-
tion and sensing. Most existing works require amendments
to existing communication systems or protocols. There are
two leading solutions: orthogonal resource allocation and
unified waveform design [44]. In the former, sensing and
communication systems share the same hardware. Orthog-
onal resources in temporal domain [27, 30, 41, 74], spectral
domain [9, 65, 66], or spatial domain [20, 55] are allocated
to two systems for reaching integration. Unlike them, uni-
fied waveform design [11, 28, 45, 46, 51] aims to design a
dual-functional waveform, in which both wireless and hard-
ware resources are shared. Compared with orthogonal re-
source allocation, spectrum efficiency can be improved. For
instance, Liu et al. [45] optimize the trade-off between sens-
ing and communications performance and design an optimal
dual-functional waveform. Moreover, Chen et al. [13] pro-
pose a novel sensing framework, namely ISACoT, to achieve
ISAC with encompassing time, frequency, space, and pro-
tocol aspects. Besides, there is a future WiFi standard on
sensing, namely 802.11bf. It is an ongoing standard focusing
on designing a new WLAN sensing procedure. Regardless
of the sensing or communication performance, the above-
mentioned designs require modifications to existing commu-
nication systems and are not compatible with most existing
WiFi APs and devices. In this paper, we propose SenCom
to achieve sensing without any modification to COTS WiFi
systems. To our best knowledge, it is the first practical ISAC
system that enables seamless WiFi sensing by sniffing com-
munication traffic.
WiFi-based sensing:WiFi has been exploited for various
sensing purposes. Existing WiFi-based sensing applications
fall into two categories according to the sensing goals: de-
tection/recognition and estimation [53]. Therein, detection

and recognition are binary and multi-class classification
tasks, respectively. The second category belongs to the mea-
surement task. Detection systems usually aim at achiev-
ing binary sensing tasks, such as human presence detec-
tion [3, 22, 32, 59, 61, 62], fall detection [34, 60, 81], and mo-
tion detection [21, 25, 42, 49, 78, 79]. Recognition systems are
generally utilized to accomplish multi-class prediction tasks,
such as activity recognition [7, 17, 18, 37, 64], gesture recogni-
tion [2–5, 29, 36, 82], user identification [12, 14, 31, 47, 48, 70],
and so on. In an estimation system, users can acquire quan-
titative feedback, such as location [33, 38, 40, 43, 56] and
breathing rate [1, 50, 52, 71, 72]. Although a lot of previous
works reuse WiFi frequency band and COTS WiFi devices to
implement the sensing systems, none of them can directly
work with normal WiFi 802.11ac/ax data traffic due to the
impact of communication-oriented designs like MIMO and
beamforming. In this paper, we design SenCom to enable
sensing with such WiFi communication context. Particularly,
the design of SenCom is independent of any specific sensing
task. It helps an arbitrary sensing application in acquiring
quality and sufficient CSI data without impairing ongoing
normal WiFi communication.

8 CONCLUSION
In this paper, we propose SenCom, which enables WiFi sens-
ing while maintaining communication capabilities. SenCom
reuses the communication facilities and packets for sensing.
In its design, we propose a CSI calibration method to ob-
tain quality and unified CSI. Additionally, we introduce a
fitting-resampling scheme to support upper-layer sensing
applications with dimensionality-consistent CSI, and an in-
centive strategy that guarantees the sufficiency of CSI. The
real-world experimental results demonstrate that SenCom
is capable of supporting a variety of sensing applications,
while retaining good communication performance.
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