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ABSTRACT
Rural Internet of Things (IoT) systems connect sensors and
actuators in remote areas, serving crucial roles in agriculture
and environmental monitoring. Given the absence of net-
working infrastructure for backhaul in these regions, satellite
IoT techniques offer a cost-effective solution for connectivity.
However, current satellite IoT architectures often struggle
to deliver high performance due to temporal and spatial link
challenges. This paper presents SateRIoT, a new network
architecture with temporal link estimation and spatial link
sharing that fully exploits the capability of space low-cost
low-earth-orbit (LEO) IoT satellites and ground low-power
wide area (LPWA) IoT techniques in rural areas. First, we
introduce a bursty link model that predicts the number of
transmittable packets within a transmission window, reduc-
ing energy waste from failed uplink transmissions. Moreover,
we enhance the model by selecting informative features and
optimizing the window length. Additionally, we develop a
multi-hop flooding protocol that enables gateways to buffer
and share data packets across the network while incorporat-
ing a priority data queue to avoid duplicate transmissions.We
implement SateRIoT with commercial-off-the-shelf (COTS)
IoT satellite and LoRa radios, then evaluate its performance
based on real deployment and real-world collected traces.
The results show that SateRIoT can consume 3.3× less energy
consumption for an individual gateway. Moreover, SateRIoT
offers up to a 5.6× reduction in latency for a single packet
and a 1.9× enhancement in throughput.
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1 INTRODUCTION

The Internet of Things (IoT) is revolutionizing the way we
understand and interact with the physical world, enhanc-
ing precise agriculture [14, 32, 38], environment monitor-
ing [11, 23, 55], and forest fire prevention [16, 47] among
others. Low-power wide-area (LPWA) IoT techniques (e.g.,
LoRa [1], NB-IoT [57], LTE-M [44])1 are desirable to fit the
scale of rural areas. Their networking architecture consists
of gateways with backhaul links allowing internet access
and many sensor nodes served by those gateways. However,
the lack of urban-area networking infrastructures (e.g., 5G,
LTE, wired networks) in rural areas presents a cost-benefit
concern regarding the huge expenses of establishing new
backhaul links.
Recently, LEO satellites [26, 54] demonstrate global In-

ternet access for ground satellite radios with space links. A
satellite radio sends its packets to LEO satellites over space
up-links, and then these packets are forwarded to several
territorial ground stations, which are Internet-connected,
through space down-links. Exploring existing LEO satellites
to enable direct-to-satellite (DtS) IoT is a cheaper alternative
to establishing new backhaul links on the ground. For exam-
ple, SpaceX’s [45] subsidiary Swarm [50]2, a commercial-off-
the-shelf (COTS) DtS-IoT provider, provides global connec-
tivity for $5 per link per month.
SWARM uses ultra-small LEO satellites whose orbit alti-

tude is either 462 kilometers or 510 kilometers. The connec-
tions between ground satellite radios and the satellites can be

1We implement our prototype with LoRa so use LoRa to represent general

LPWA IoT techniques in the rest of the paper.
2We implement our prototype with SWARM so use SWARM to represent

general DtS-IoT techniques in the rest of the paper.
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Figure 1: An illustration of link-aware SateRIoT with

multi-hop data sharing.

affected by many factors [3, 9, 17, 18, 30], e.g., weather, satel-
lite orientation, relative antenna position between the radios
and the satellites, etc. According to our measurement study
(§ 2.3), the available connections are sparse during a SWARM
satellite passing by. In 80% cases, the total connection time
is less than 20% of the pass duration. Moreover, the data rate
of SWARM-M138 [49] radio is as low as 1 kbps. The sparse
connection time and low link capacity motivate us to rethink
the ground-space IoT architecture that can fully utilize the
LEO IoT satellite network to achieve optimal IoT backhaul
throughput while keeping efficient energy consumption and
low end-to-end delay. As shown in the left part of Figure 1,
existing works [8, 19, 29, 48] simply equip a satellite radio
on each LoRa gateway so that the LoRa gateway forwards
its collected sensory data to the Internet when a satellite
passes by. However, this intuitive ground-space IoT architec-
ture fails to achieve high performance due to the following
temporal-spatial link challenges.
Challenge 1: Lossy up-links during short-window data

pulling. When a gateway is connected to a satellite, the
up-links could be lossy, degrading the energy efficiency of
the gateway with a fixed number of packet transmissions.
Specifically, deploying power infrastructure in remote ar-
eas such as farms and forests is challenging, complicating
the powering of LoRa gateways [25, 36]. The existing IoT
gateway utilizes small solar panels for cost-effectiveness and
ease of deployment. However, due to insufficient sunlight,
these small panels become unsustainable in variable weather
conditions such as rain, snow, cloudy days, and nighttime.
Therefore, energy efficiency is important for satellite IoT
gateways. The energy consumption of SWARM-M138 [49]
radio reaches 7.97 mJ/bit in its Tx mode with 1 kbps, which
is 408× larger than 0.0195 mJ/bit LoRa SF10 976 bps.
A SWARM satellite transmits data beacons to pull data

from ground SWARM radios. When a SWARM radio receives
this beacon, confirming that a connection is established, it
performs 6 subsequent mandatory transmission attempts
(i.e., a fixed number in SWARM protocol), irrespective of
how many are received. However, in such a short-term trans-
mission window, we observe that a SWARM radio can still

fail to deliver its packets to the satellite despite having re-
ceived the data beacon successfully. With the temporally
lossy up-link, the enforced repeated transmissions cause sig-
nificant degradation of LoRa gateways’ energy efficiency.

Challenge 2: Diverse connection time among spatial

LoRa gateways. Due to the spatial diversity of LoRa gate-
ways, although they all experience sparse connections, we
observe the connection time is quite diverse among them.
In our measurement study, when a satellite passes over four
LoRa gateways, different LoRa gateways can successfully
transmit their data to the satellite at different times. In most
cases, only one LoRa gateway is available at a time (§ 2.5).
If a LoRa gateway only transmits the data received by itself,
the LoRa gateway with sufficient connection time and trans-
mission capabilities will keep idle when all its own data has
been forwarded. Considering the buffered data on other gate-
ways with insufficient connection time, the overall network
throughput is lowered.
To address these challenges, in this paper, we propose

SateRIoT, a new network architecture with temporal link
estimation and spatial link sharing that fully exploits the
capability of SWARM backhaul connections, thus enabling
high-performance ground-space IoT for rural areas. We esti-
mate the temporal link behavior to determine the optimal
number of data packets to save energy and allow gateways
to share their idle connection time with others to maximize
network throughput and lower the end-to-end delay. As
shown in the right part of Figure 1, besides self-generated
data, each LoRa gateway buffers data shared from all other
gateways. When the top-middle LoRa gateway finds that 𝑘
packets should be transmitted in the current time window, it
will immediately transmit 𝑘 packets from either itself or oth-
ers. The design of SateRIoT includes three key problems to
guarantee high network performance while reducing extra
computation and maintenance costs.

Firstly, the quality of a SWARM link is determined bymany
factors (e.g., atmosphere, satellite orbit) [3, 9, 17, 18, 30], cre-
ating a huge feature space that exposes the challenge of
balancing between accuracy and agility. The accuracy can-
not be guaranteed if we only use simple features like weather
and satellite orbit information as inputs. If more link infor-
mation is counted while a SWARM satellite is passing, we
have limited time for the computation of link modeling and
traffic scheduling. In SateRIoT, we choose to guarantee accu-
racy first while optimizing its agility. Specifically, we design
a bursty link model to depict the temporal link behavior. We
estimate the number of successful packet transmissions in
an adaptive transmission window in which the link quality
is consistent. To find the optimal trigger timing that balances
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between sufficient feature collection and limited computa-
tion time, we propose an Acknowledgement(ACK)-triggered
lightweight ensemble learning model.
Second, selecting proper model parameters is not trivial

to achieve optimal performance in practice. On one hand,
we need to determine a small group of specific features from
many available ones as the model inputs that derive accurate
link estimation. Meanwhile, we need to define an appropri-
ate time length for each transmission window adaptively.
Due to the lossy link nature, a long transmission window
makes it hard to keep link consistency, degrading link estima-
tion accuracy. However, due to link sharing among multiple
LoRa gateways, short transmission windows lead to frequent
model computation and network data status synchronization,
causing increased energy consumption. Additionally, to en-
sure a transmission window can be configured in practice, it
must align with the timing of the SWARM data-pulling win-
dow. To address the issues, SateRIoT proposes meticulously
utilizing features from the physical layer, COTS satellite IoT
protocols, and environmental information. For the optimal
window length, we aim to find the longest window with
consistent link quality to save energy. We adopt an empirical
method to identify the optimal configuration.
Third, in link sharing, a LoRa gateway needs to collect

data from others. However, when and how to collect the
data is challenging. Since the connection time is sparse, after
a LoRa gateway sets up a transmission window, we have
no time to use energy-efficient tree-based ad-hoc routing
protocols for packet pulling from others [15, 56]. Since the
energy consumption of a LoRa radio is far less than that
of the SWARM satellite radio, we enable link sharing with
a multi-hop flooding protocol, which utilizes broadcast to
achieve network-wide data consistency quickly. Specifically,
when a gateway collects new data from its sensor nodes, it
initiates a flooding process, where other gateways forward
the packet until all receive a copy. In this way, each LoRa
gateway collects up-to-date data from others in a timely man-
ner. In addition, carrier sense backoff is adopted to prevent
packet collisions during concurrent LoRa flooding, improv-
ing network consistency and energy efficiency. On the other
hand, it is possible for gateways to establish their transmis-
sion windows simultaneously. Although collisions can be
mitigated by the LR-FHSS modulation [33, 58] in SWARM,
duplicate packets may still occur in link sharing. To pre-
vent duplicates, we prioritize self-generated data and shuffle
relayed data. We also design beacons to lock transmitting
packets and synchronize queues with the flooding service.

We implement SateRIoT on four gateways embedded with
COTS SWARM M138 [49] and LoRa SX1262 [40] radio chips.
We deploy these four gateways in several university farms
that cover 9 𝑘𝑚2 areas to evaluate the performance of Sate-
RIoT. Moreover, we have conducted extensive trace-driven

emulation experiments for a large network scale with 12
gateways. Our results indicate SateRIoT delivers comparable
throughput using up to 3.3× less energy for each gateway.
Additionally, SateRIoT reduces packet delay by up to 5.6×
and boosts throughput by 1.9×. Our contribution can be
summarized as follows:

• We empirically measure the characteristics of LEO IoT
satellite links with real-world deployment and observe
three insights of temporal-spatial link behavior, which
demonstrate the barriers of directly adopting the DtS-
IoT to achieve high-performance rural IoT.

• We design SateRIoT, a new networking architecture
consisting of well-designed satellite link estimation
and sharing modules to enable network-wide data
sharing and link-aware data transmission, enhancing
network performance.

• We fully implement the proposed SateRIoT designwith
COTS LoRa gateways and SWARM radios. We exten-
sively evaluate its efficiency with real-world deploy-
ment and trace-driven emulation. The results demon-
strate that SateRIoT achieves equivalent throughput
with 3.3× less energy for individual satellite devices.
Additionally, our scheduling scheme reduces packet
delay by up to 5.6× and enhances throughput by 1.9×.

2 PRELIMINARY AND OBSERVATION

2.1 LEO Satellite for IoT

LEO satellites operate between 500 km and 2,000 km above
Earth, offering advantages such as shorter latency and more
frequent revisits compared to satellites in higher orbits. LEO
satellite communication can provide high-speed broadband
internet access globally, like Starlink [46] and Oneweb [31].
Additionally, LEO satellites can also facilitate low-cost IoT
in rural areas with limited network infrastructure.

Satellite IoT has become an emerging field with selective
commercial corporations striving to provide global IoT con-
nectivity without resorting to expensive high-data-rate satel-
lite communication systems. These entities have launched
satellites to form extensive constellations, enabling the use of
ground-based small satellite radios equipped with advanced
long-range communication capabilities. For example, Sate-
liot [39] proposes to integrate NB-IoT for satellite commu-
nications into both current and forthcoming 5G infrastruc-
tures. Lacuna Space [21] delivers an uplink service utilizing
a LoRa-inspired physical layer. SpaceX’s IoT solution [45]
SWARM Technologies [50] collaborates with Semtech [41]
to employ long-range frequency hopping spread spectrum
(LR-FHSS) modulation within the VHF bands. This operates
with an uplink range of 148-150 MHz and a downlink range
of 137-138MHz, aiming for exceptionally cost-effective satel-
lite communication at a 60 USD data fee per year. In this
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Figure 2: Connection time ratio.

study, we use SWARM satellite radio to evaluate the efficacy
of COTS satellite IoT systems and subsequently craft our
design based on these insights. SWARM with 168 satellites
differs quite from traditional high-data-rate LEO satellite net-
works (e.g., Starlink with more than 10000 satellites) in terms
of protocols, satellite size, and constellation scale. SWARM
links exhibit unique characteristics such as a more sparse
satellite distribution, shorter connection times, lower fre-
quency usage, and reduced network costs [3, 50].

2.2 Measurement Experiments

To evaluate the network performance of the COTS satellite
IoT system, we carried out outdoor measurement experi-
ments on a rural farm. We employed 4 SWARM Eva Kits [51],
each fitted with an M138 modem [49], and powered them
using 18-24V DC solar panels. Over a span of 120 hours, we
gathered data from 12 unique locations within a large farm,
collecting approximately 3,000 packets and spanning an area
of 9km2 in rural farmland. We use infinite traffic to ensure
we can capture the link status of every satellite passing by.

2.3 Up-link Connection Time

The propagation environment for SWARM satellites operat-
ing in the VHF bands introduces unique challenges associ-
ated with the temporal and spatial link variability [3]. For
instance, atmospheric elements such as precipitation rates
and cloud cover can cause time-dependent attenuation. This
attenuation can vary over brief periods, making a substantial
impact on link quality. Meteorological changes, especially
seasonal variations, exacerbate these dynamics [18]. Due to
unpredictable conditions, a fixed satellite link pattern cannot
be relied upon. On the other hand, the link’s spatial vari-
ability is attributed to differences in terrain and topography.
These geographical features can result in shadowing and
multipath effects, which differ based on the elevation angles
and the terrain’s contours [17, 18]. Additionally, satellite ori-
entation is critical, especially in low Earth orbit, due to its
high angle sensitivity. As a satellite progresses along its orbit,
its relative positioning with respect to the ground satellite
radio also changes. The elevation angle, defined as the angle
between the ground’s horizontal plane and the satellite’s
line-of-sight, influences the atmospheric path length and,
subsequently, the link attenuation [20, 54].
Observation 1: Disconnected links During a SWARM
satellite passes by, we divide the passing duration into sev-
eral time windows with 1 minute. Given a time window, if a

Data Beacon ACKData Packet

… …
Satellite

Terminal
6 transmission attempts Failed Retransmission

Non-data Beacon

Time

Figure 3: COTS SWARM IoT Communication Protocol.

packet is successfully transmitted, we mark this time win-
dow as a connected time window. We define the connection
time ratio as equal to the ratio between total connected time
windows and total time windows in the passing duration to
quantify the link disconnected property. According to the
collected data traces, Figures 2 shows the results based on
different maximum elevation angles and satellite passing
duration. The results show that the connection time ratio
remains consistently low. This trend holds irrespective of the
maximum elevation or the duration of satellite passage. The
average and median values are 14.1% and 11.9%, respectively.
The highest observed ratio doesn’t exceed 40%, and in 80%
of the satellite passes, this ratio is below 20%. Such findings
indicate the satellite links are disconnected, increasing the
transmission latency.

2.4 SWARM Communication Protocol

Figure 3 depicts the communication protocol within the
Swarm satellite IoT system. There are 3 basic packet types:
satellite non-data/data beacon, data packet, and ACK (ac-
knowledgment). Dotted edges represent the reception side
and solid edges represent the transmission side. As a satellite
coverage period begins, all the satellite radios awaken from
their sleep mode. These satellite radios then start monitoring
space, anticipating the satellite beacon. The received satel-
lite beacon is the unsolicited message from the overhead
satellite that can be classified into two types: non-data and
data beacon. The data beacon informs satellite radios of the
satellite’s presence and its readiness to accept messages from
the ground. Receiving the satellite data beacon is a prereq-
uisite for initiating data packet transmission to the satellite.
Non-data beacons are used for downlink traffic and will not
trigger the satellite radio to transmit data. Multiple non-data
beacons appear before data beacons. Both beacon types in-
clude information on the Received Signal Strength Indicator
(RSSI), Signal-to-noise ratio (SNR), frequency, timestamp,
and satellite ID.

According to the collected data traces, during times with-
out transmissions, the non-data beacons were sent every
60 s. During each data transmission period, the satellite will
increase the frequency of non-data beacons at the beginning
and send a data beacon afterward. The time offset between
two data beacons uniformly varies from 20 s to 52 s. All the
data is transmitted between two data beacons. The median
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Figure 4: Comparisons of transmitted packet number at each minute between two gateways at different distances.
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Figure 5: Lossy link ratio.
and average time gap between two adjacent data beacons
during gateway transmission is 33 s and 35.2 s respectively.

When data packets are successfully received by the satel-
lite, an ACK is promptly sent back to the satellite radio, as
illustrated by the green block in Figure 3. The ACK signifies
a successful data packet transmission. It includes RSSI, SNR,
the sent packet ID, and frequency information. All packets
delivered to the cloud correspond with acknowledgments
received at satellite radio. If an ACK is not detected within a
receiving window, it indicates a failed packet delivery. There
are two main reasons why a packet may fail to reach the
satellite: The first is when satellite radio chooses not to trans-
mit data because of a high background noise level with RSSI
exceeding -88 dBm. The second is when satellite radio trans-
mits packets, but the satellite cannot detect them, either due
to poor signal quality or interference.
Observation 2: Lossy Links. Satellite radio has a transmis-
sion buffer with a queue system called satellite radio queue,
and messages are generally dispatched based on their en-
try sequence into this queue. Any unsuccessful packets are
then re-queued for another attempt in the next transmis-
sion window accompanied by the following data beacon. In
practice, the energy efficiency of satellite radio transmis-
sion performance is often degraded by failed transmissions.
This inefficiency is further exacerbated by retransmissions,
particularly when the communication channel deteriorates.
“Lossy link” indicates the link condition when a downlink
data beacon can be received while the uplink data packets
may suffer loss in the following transmission windows. Us-
ing a software-defined radio, we detected 6 signal pulses on
the uplink spectrum. COTS SWARM fixes the uplink trans-
mission of 6 consecutive packets as the default setting to
match its temporal dynamics. COTS radios set this fixed
value because more attempts may result in high chance of
transmission failures while fewer attempts might waste good
transmission opportunities.
During the same satellite pass, the lossy link ratio is de-

fined as the proportion of 1-minute transmission windows
experiencing lossy links to the total number of transmis-
sion windows during the pass duration. According to our

collected data trace, Figure 5 illustrates the lossy links ratio
under different maximum elevation and pass duration set-
tings. We can observe that 71% satellite radios experience
100% lossy links ratio, leading to significant energy wastage,
especially in satellite communication radios with high en-
ergy consumption. This motivates us to predict transmission
capability to reduce energy waste.

2.5 Geo-spatial Distributed Radios

As mentioned in Section 2.3, too many factors can influ-
ence the satellite communication link. The link of different
geospatial locations can be variable and dynamic. To better
understand the link dynamics across multiple locations, we
compared the performance of multiple satellite radios oper-
ating concurrently to measure the maximum transmission
capability as illustrated in Figure 6 and Figure 4.
Observation 3: Dynamic spatial and temporal links.We
analyzed the performance during each minute to further un-
derstand the packet transmission dynamics, as illustrated in
Figure 4. The bars represent the number of packets success-
fully sent to the satellite during a 1-minute time window. In
Figure 4(a), the satellite radios of 4 gateways transmit pack-
ets alternately over time, with primarily non-overlapping
periods. In most cases, only one gateway can connect to
the satellite for one minute. Figure 4(b) further reveals that
the two gateways’ sending periods do not overlap at all,
occurring at different times separately. This suggests that
transmission capabilities vary by location and time.

Moreover, we analyzed the overall performance of 4 gate-
ways arranged in a square formation, where each gateway
was equidistant from its neighbors by either 500 m or 800 m
with the same satellite pass duration. The slopes change over
time for 4 gateways, demonstrating the temporal diversity.
In Figure 6(a), A, C, D exhibit varying leadership in overall
transmission rates. Notably, B andD experienceminimal data
transmission for about 15 minutes, and C surges ahead after
a 62-minute delay, maintaining its lead thereafter. As the ob-
servation period progresses, the performance gap among A,
D, and B significantly increases, with A and B achieving 1.9×
and 1.5× the packets of D. Conversely, Figure 6(b) shows D’s
progressive increase, with B and C alternatively leading to a
similar trend, ultimately achieving comparable throughput.
A maintains low data rates, managing only 54 packets over
100 minutes, 2.8× less than D, which significantly falls short
of transmission requirements.
We also compare the performance of two terminals with

2300 m distance. Figure 6(c) illustrates that A begins its data
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Figure 6: Comparisons of throughput with the same satellite pass among multiple gateways at different locations.
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Figure 7: The network architecture in SateRIoT.

transmission 20 minutes after B. And B progressively extends
its lead over time. As a result, by the end of a 120-minute
period, B has achieved approximately 2× the throughput
of A. Conversely, Figure 6(d) presents a scenario where the
performance disparity between the gateways narrows over
the same distance. Although B maintains its lead initially, A
catches up by the 43-minute, matching B’s cumulative data
transmission. Subsequently, A overtakes B and sustains this
advantage up to the 100-minute, achieving 1.3× throughput
compared to B. Collectively, these illustrations underscore
the dynamic performances of satellite radio under varying
temporal and spatial scenarios. Temporal and spatial link
dynamic creates varying transmission capabilities among
satellite radios. Some satellite radio may struggle to send
packets, while others have surplus capacity after completing
the delivery of packets within their own covered ground
area. Thus, the network throughput is degraded.

3 SYSTEM DESIGN

3.1 System In A Nutshell

In SateRIoT, a LoRa gateway is equipped with a SWARM
radio to access the Internet through SWARM satellites. On
the other hand, it can use its LoRa radio to communicate
with other LoRa gateways and collect sensory data from
sensor nodes. All LoRa gateways operate in a distributed
manner. Figure 7 illustrates the network architecture design
of SateRIoT, which consists of three layers: link estimation,
link sharing, and physical layer communication radio.

In the link estimation layer, the core design is the bursty
link model (§ 3.2). First, we build a lightweight model struc-

ture (§ 3.2.1). The temporal burstiness of a link determines
the short stable duration of the temporal links for data packet
transmission. Based on our understanding of SWARM pro-
tocols, we design an ACK-triggered scheme to estimate the

link, balancing model accuracy and agility to make it prac-
tical for real-time link estimation. Second, features (§ 3.2.2)
are selected to be the most informative for accurate tempo-
ral link estimation. These features include information from
the physical layer, environmental characteristics, and COTS
satellite protocols. Third, we empirically select the longest
window length (§ 3.2.3) to maintain consistent link quality
while keeping the computation and system overhead low.

To combine the capabilities of multi-gateways, we design
link sharing module to improve the overall network per-
formance by exploring link spatial diversity. the multi-hop

flooding protocol (§ 3.3.1) uses the LoRa radio to enable effi-
cient network-wide data sharing of sensory data or flooding
beacon. Priority data queue (§ 3.3.2) avoid duplicate trans-
mission by setting priority order among data packets. The
data packets in the priority data queue are managed by both
the link model and the flooding protocol.

3.2 Bursty Link Modeling and Estimation

According to the observation of temporal lossy link, it sug-
gests the up-link is short-term bursty, which means the link
behavior (e.g., success or failure) is only stable in a varied
short-time window. We design a bursty link model that es-
timates how many packets can be successfully transmitted
in a stable transmission window. To guarantee the current
transmission window is bursty for successful transmission
and collect sufficient information to estimate the number of
successful transmissions, instead of using satellite beacons to
trigger a link estimation, we trigger the link estimation after
an ACK is received, indicating a packet has been received at
the satellite side. Moreover, we can collect additional critical
features from the packet ACK.
Specifically, based on our observation in §2.4, a gateway

attempts data packet transmission once it has received a
data beacon from a passing-by satellite. To estimate the cur-
rent link quality, the gateway only adds a probe packet to its
satellite radio queue. Once the gateway receives the acknowl-
edgment of the probe packet from a satellite. We initiate a
link estimation process to determine how many data packets
should be set as pending status in a transmission window,
whose time length is predetermined as 𝑇𝑡𝑥 , including mul-
tiple data beacons. From our measurement study, both the
PDR and SNR remain stable across these consecutive data
beacons. We leverage the short-term stability to perform
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link estimation for a transmission window to lower the link
estimation overhead. When all pending data packets are
transmitted once or the transmission window expires, re-
gardless of whether all ACKs are received, we dequeue the
left data packets from the satellite radio queue and insert a
probe packet into the satellite radio queue again to trigger
the link estimation of the next transmission window.

3.2.1 Light-weight model structure. To predict the versatile
link within a given transmission window, we use boost-
ing model architecture to build an effective, lightweight
machine-learning algorithm for link estimation and sched-
uled packet prediction. Figure 8 illustrates our link estima-
tion model architecture and transmission capability predic-
tion. We utilize the four kinds of features as the input X
and try to predict 1 to k implement classifications where
𝑘 = 6 ×𝑤 , w represents data beacon amount given the du-
ration of the current transmission window 𝑇𝑡𝑥 . The model
𝐹0 (𝑥) is initialized to the logarithm of class priors, i.e., for
all 𝑥 , 𝐹0 (𝑥) = [log𝑝1, log𝑝2, . . . , log𝑝𝑁 ]

𝑇 , where 𝑝𝑘 is the
proportion of class 𝑘 in the training set. The tree index in
our boosting model is t from 1 to N:
(1) For each class 𝑘 , compute the pseudo-residuals:

𝑟 𝑡𝑖𝑘 = −

[
𝜕𝐿(𝑦𝑖 , 𝐹 (𝑥𝑖 ))

𝜕𝐹𝑘 (𝑥𝑖 )

]
𝐹 (𝑥)=𝐹𝑡−1 (𝑥)

𝐿 is the multi-class logarithmic loss. For a dataset of
𝑁 samples, the total multi-class logarithmic loss is:

𝐿 = −
1

𝑁

𝑁∑
𝑖=1

𝐾∑
𝑘=1

𝑦𝑖𝑘 log(𝑝𝑖𝑘 )

𝑦𝑖𝑘 indicates whether sample 𝑖 is in class 𝑘 (1 if true,
0 otherwise). 𝑝𝑖𝑘 is the model’s predicted probability
that sample 𝑖 belongs to class 𝑘 .

(2) For each class 𝑘 , fit a new tree 𝑓𝑡𝑘 (𝑥) with 𝑟
𝑡
𝑖𝑘
.

𝑓𝑡𝑘 (𝑥) = arg min
𝑓

𝑀∑
𝑖=1

𝐿
(
𝑟 𝑡𝑖𝑘 , 𝑓 (𝑥𝑖 )

)

(3) Update the model: For each class 𝑘 , find the coefficient
𝛾𝑡𝑘 that minimizes the overall loss, and update

𝛾𝑡𝑘 = argmin
𝛾

𝑁∑
𝑖=1

𝐿(𝑦𝑖 , 𝐹𝑡−1 (𝑥𝑖 ) + 𝛾 𝑓𝑡 (𝑥𝑖 ))

𝐹𝑁 (𝑥) = 𝐹0 (𝑥) +
𝑁∑
𝑡=1

6×𝑤∑
𝑘=1

𝛾𝑡𝑘 𝑓𝑡𝑘 (𝑥)

During the training process, we adjust data or feature sam-
ple ratios to randomly selectively use data and features for
each tree rather than employing the entire set. This random
feature and data diversity makes the final model more ro-
bust, enabling it to better adapt to various data distributions.
We can effectively reduce the risk of overfitting the training
data, thereby enhancing the model’s generalization ability.
Our model balances uneven real data sets by giving more
weight to underrepresented categories during training. We
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Tree N
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Tree tTree 1 …
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Figure 8: Boosting based link estimation model.
also use random sampling to oversample/desample the data
with different labels and balance the class distribution.

3.2.2 Link features. The input of link estimation model.
Physical layer features: The successful transmission of
the probe packet indicates a satellite data beacon and an
acknowledgement have been received by the gateway. RTrssi
and RTsnr indicate the RSSI and SNR of the received satellite
data beacon. TDrssi and TDsnr indicate RSSI and SNR of the
acknowledgment of the probe packet. The RSSI and SNR
values represent the physical propagation property of the
current down-link from the satellite to the gateway.
Expected Signal Power (ESP) feature: RSSI and SNR can
be distorted by environmental noises. To focus on satellite
signals, we combine RSSI and SNR to generate an ESP [7,
37] value, which indicates the signal attenuation along the
propagation path. The ESP feature is calculated as follows:

ESP = RSSI + SNR − 10 log10 (1 + 100.1·SNR) (1)

Then we can get RTesp and TDesp with physical layer features.

Environmental features: We include several environmen-
tal features as follows: Noise: RSSI of background noise. This
is measured by SWARM radio when no satellite appears. El-
evation: The maximum elevation during a satellite pass can
be found on the SWARM website [50] given the location
of the gateway. Passing duration: The passing duration of
a satellite is announced on SWARM website [50] according
to the location of the gateway. Transmission Window Offset:
The time offset between the current estimated transmission
window and the time that the satellite starts to pass the area.
The relative antenna position between the gateway and the
satellite is different at different time offsets. Weather : Based
on the weather released by local weather station, we use
four-levels quantization to define the weather values from
sunny to drizzle.
Protocol features: RTdelay: The time delay between the
received data beacon and acknowledgement of the probe
packet. RTcount: The number of satellite non-data beacons
during a 30-seconds period before the acknowledgement of
the probe packet.

3.2.3 Link window length. The predicted window length of
our link estimation model is significant. Predicting long win-
dows can lead to low link estimation accuracy since only 2%
of the minutes have data transmission modes lasting more
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than 2 minutes. Consequently, selecting overly long obser-
vation windows can significantly degrade link estimation
accuracy. Conversely, shorter windows necessitate more fre-
quent transmission of LoRa beacons, which increases both
energy consumption and computational overhead. Therefore,
optimizing the window length is critical to achieving a bal-
ance between estimation accuracy and system efficiency. To
maintain consistency and continuity with the transmission
patterns, the window length must align with the natural data
transmission cycles. Higher link quality and more reliable
data transmission are indicated by consecutive data beacons.
Inappropriate window lengths can disrupt these continu-
ous transmission periods, resulting in a marked decrease
in estimation accuracy. Thus, careful selection and tuning
of window lengths are essential for improving link quality
assessments and ensuring efficient network operation.

3.3 Link Sharing

3.3.1 Multi-hop Packet Flooding Protocol. The multi-hop
flooding protocol provides a primitive networking method
to enable network-wide packet sharing. The basic idea is
that a LoRa gateway initiates a flooding process once it has a
packet to share. There are two types of packets: data packets
and flooding beacons, with the latter used to manage the data
queue. A LoRa gateway immediately forwards the packet
once it receives one from another LoRa gateway. A flooding
packet starts from the original gateway. In the first round, the
packet will be delivered to the closest gateways. Next, these
gateways will keep relaying this packet to their next-hop
adjacent gateways. Eventually, the packet can be delivered to
all gateways [2, 28]. For IoT data collection systems in rural
areas, flooding protocol is easy to deploy and implement in
the low-cost IoT gateways without coordination overhead,
avoiding complex network traffic patterns.
Carrier-sense based Collision Avoidance. It is possible
that several LoRa gateways initialize multiple flooding pro-
cesses in a short period. Additionally, several LoRa gateways
may receive the same packet and start to forward simulta-
neously. Without noticing others’ packet transmission, the
potential packet collision could degrade the reliability of the
data sharing. It will be worse in dense network deployment
with larger flooding scale. To solve this, We adopt channel
activity detector (CAD) on COTS LoRa radio chips [13] to
enable low-cost carrier-sense-based collision avoidance. Be-
fore a LoRa gateway forwards a received packet, it will wait
for a random initial backoff, then repeat carrier sense until
the channel is clean.
Flooding Beacons. The link model of a gateway triggers
two types of beacons to synchronize the data packets among
all gateways with the flooding protocol. Firstly, when the
gateway determines which packets will be transmitted in a

transmission window, it sends out a beacon including infor-
mation on these packets. Secondly, when the transmission
window ends, the gateway sends a beacon indicating which
packets have been successfully transmitted.
Network Consistency. In case a LoRa gateway misses a
packet from other gateways due to LoRa link dynamics [37].
Each LoRa gateway maintains the status of its local buffered
packets and broadcasts the status with the schedule of a
Trickle timer [24]. If a gateway receives others’ status and
finds an inconsistency with its local status, it will request
other gateways to send the missing packet. The trickle timer
will be reset when a gateway receives a request. This strategy
offers both a systematic approach to maintaining informa-
tion consistency and a proactive method to resolve potential
mismatches in a distributed environment. In this way, all
LoRa gateways consistently buffer all packets and receive the
flooding beacons from others for later global packet trans-
mission scheduling.

3.3.2 Priority Data Queue Management. Priority and data

enqueue: The priority data queue structure includes a self-
generated data queue and a relay data queue. The self-generated
data queue has higher priority than the relay data queue.
Since self-generated data packets are unique across different
gateways, duplicate packets will be prohibited when multi-
ple gateways simultaneously send data packets to a satellite
with non-collided frequency hopping. We do order shuffling
for the relay data queue. Namely, when a gateways received
a relay data packet, it will insert the data packet to a random
position in the relay data queue. In this way, when multiple
gateways concurrently transmit data packet, the number
of duplicate packets will be further reduced since they will
forward the relayed data in different order.
Packet holding and releasing When a gateway receives a
flooding beacon from others indicating the data packets they
will transmit in the coming transmission window, the gate-
way will check its queue. For those identical data packets,
the gateway will hold them for a holding period that equals
two transmission windows 2𝑇𝑡𝑥 . The holding packets have
no chance scheduled if a transmission window is coming. In
the holding period, if the gateway receives another flooding
beacon (§3.3.1) indicating the holding packets are success-
fully transmitted, it will dequeue them directly. When the
holding period expires, the gateway will release them. In this
way, we actively reduce potential duplicate transmissions.
For each gateway, when a transmission window ends, it will
dequeue packets whose ACKs have been received.

4 IMPLEMENTATION

Our methods are fully compatible with LoRaWAN and COTS
satellite devices without additional hardware or centralized
coordination. The data for the SWARMIoT only costs 5 USD
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each month [50], much less than the cost required for net-
work infrastructure construction in rural areas.
Ourdoor SWARM satellite radio deployment: We em-
ployed 4 Swarm Eva Kits [51], each fitted with an M138
Modem [49], and powered them using 18-24V DC solar pan-
els. Figure 9 shows the outdoor Swarm ground gateway de-
ployment scenarios to collect data in four different weather
conditions (e.g., sunny, partly cloudy, mostly cloudy, fully
cloudy or drizzle, rain). Two similar weather conditions can
coexist during the same time period in a close area. The lo-
cations of SWARM devices are shown as orange circles in
Figure 10 around 9 𝑘𝑚2 rural area farmland. For the satellite
radio, the length of a packet is 192 bytes that can contain
multiple sensory data packets.
Outdoor LoRa radio deployment: Figure 10 depicts the
outdoor deployment of LoRa radios in 9 𝑘𝑚2 farm zones.
The yellow triangles represent locations. We deploy LoRa
devices in elevated positions with open space, such as high
fences, small trees, or on tripods at heights ranging from
1.5 m to 2.5 m.We use 4.2 dBi gain LPWA antennas [6] and 12
SX1262 [40] radios controlled by ESP32 MCUs [10] operating
on US915 ISM bands with SF12 and 125kHz bandwidth. We
uses LMAC-1 [13] to enable CSMA for LoRa transmission.
Link estimation model: The predicted transmission win-
dow is set to 120 s when𝑤 = 4, which is the maximum dura-
tion observed with continuous data beacons with consistent
link quality (§ 3.2.3). The model generates 330 trees, each
with a maximum depth of 5. We use the objective function
’multi:softprob’ to show each class’s probability distribution
and the Mean Squared Error (MSE) as the loss function. We
design our model based on XGBoost [5] and SMOTE [4].
The inference time per sample is 0.373 milliseconds on a
Raspberry Pi 4 Model B [34]. Given the lightweight nature
of the model, it is particularly well-suited for deployment
on resource-constrained devices. We can anticipate excep-
tionally rapid inference times when the model is deployed
at LoRa gateways.

5 EVALUATION
Performance metrics: To evaluate the overall performance
for uplink transmission, we focus on the cumulative num-
ber of delivered packets as Throughput and the time from
packet generation to successfully delivered for each packet

as Latency. For the link estimation model’s performance,
we rely on Accuracy and Mean Absolute Error (MAE) as
metrics. We measure the performance of individual gateway
using Energy Efficiency, represented as actual transmission
attempts for each packet. For multi-hop flooding protocol
performance, we employ Latency as the key indicator to
present the packet delay among multiple gateways.
Baseline method: 1. COTS: We use the existing COTS
protocol and network architecture of Direct-to-satellite IoT
devices as our baseline. Each gateway directly sends all the
packets from their satellite communication radio’s transmis-
sion buffer without any link estimation or link sharing. This
is evaluated and compared in energy efficiency evaluation
(§5.2.2) and uplink data transmission (§5.1). 2. LDB link es-
timation model: For link prediction, we only use the latest
data beacon (LDB) to guarantee agility at first. The input fea-
tures include RSSI, SNR, ESP of data beacon, noise, weather,
satellite elevation, pass duration, and transmission window
offset. 3. ENV link estimation model: We build a linear re-
gression model to predict the total delivered data amount
during one satellite pass duration with input from weather,
satellite elevation, pass duration and location index. We use
the ENV model to compare energy efficiency performance
(§5.2.2). 4. SateRIoT-𝑤 : We use different link window

lengths as our baselines. We select the𝑤 (as mentioned

in Section 3.2.2) values of 1,2,3,5 data beacon numbers

to compare the different SateRIoT scheme.
Default settings: The default packet generation frequency
of each gateway is 1 packet per minute. The packet includes
multiple sensory data frames from its covered area. The
default weather value is 2, partly cloudy.

5.1 Overall Performance

In this section, we evaluate the overall performance in through-
put and latency with SateRIoT and COTS protocol. The delay
and possible duplicate caused by link sharing are consid-
ered in calculating the latency and throughput according to
the results from §5.3. Experiment A uses real data collected
simultaneously from 4 gateways in different outdoor loca-
tions. Experiment B employs trace-driven datasets from 12
gateways to conduct emulation, involving 4 gateways trans-
mitting concurrently during 3 different time periods with
similar satellite orbits and weather conditions. Experiment
C simulates 12 gateways, with ground-truth data generated
by our accurate link estimation model.
A. Real datasets experimentsWe use data collected out-
doors over 100 minutes from 4 gateways in §2.5 as ground-
truths. We use our link estimation model and real collected
information as input to predict the link with real and emulate
the throughput and latency. Figure 11(a) depicts the through-
put variations over time for all four gateways. As time pro-
gresses, the throughput disparity between SateRIoT and the
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(a) Real Datasets Throughput (b) Real Datasets Latency

Figure 11: Performance in real data of 4 gateways
(a) Throughput of trace-driven data (b) Latency of trace-driven data

Figure 12: Performance of trace-driven 12 gateways.

COTS method widens. After 100 minutes (6000 seconds),
SateRIoT can achieve 1.31× cumulative sent data packet com-
pared to COTS protocol. Additionally, Figure 11(a) details
the latency from packet generated time to delivery time. It
is obvious that SateRIoT offers substantially shorter latency
compared to the COTS approach. Specifically, around 80% of
the packets can be transmitted in less than 8 minutes, com-
pared to the COTS method, which requires up to 24 minutes
to achieve the same level of packet transmission. This re-
sults in SateRIoT being 3× faster. All the packet in SateRIoT

reaches a delay of less than 750 s while COTS extends to
3250 s. This indicates that the maximal latency of COTS can
be up to 4.3× longer than SateRIoT. These findings affirm
the superiority of SateRIoT in terms of throughput and la-
tency in real-world scenarios. The overall performance can
be further improved when more gateways join the uplink
transmission.

B. Trace-driven experimental settings: To evaluate more
gateways performance with SateRIoT, We enlarge the gate-
ways number to 12.We use 4 satellite radio devices as a group.
Each deployed 3 times to emulate scenarios where gateways
in 12 locations attempt to schedule data transmissions dur-
ing the same satellite pass. We select 3 satellite traces that
were closely matched in terms of elevation and pass duration.
The maximum elevations and pass duration are 71◦ with 31
minutes, 67◦ with 29 minutes, and 69◦ with 30 minutes, re-
spectively. In each satellite trace, we deploy 4 gateways to
collect real data sets from 4 distinct locations. The locations
of the gateways vary across the 3 satellite passes, ensuring
coverage of 12 unique locations in total. This allows us to ef-
fectively emulate a scenario where 12 gateways concurrently
connect to the same satellite.
Results: Figure 12(a) shows that SateRIoT transmits 332
packets, which is 1.65× more data than the COTS baseline.
Over time the data transmission gap between them widens
because the baseline focuses on individual transmissions,
missing the opportunity to use the connection time fully.
SateRIoT efficiently schedules data and controls traffic, max-
imizing the use of the transmission window across all gate-
ways with a reliable connection. Figure 12(b) reveals that
SateRIoT delivers all packets to the satellite within 357s,
while the COTS protocol takes up to 1147s. Therefore, Sate-
RIoT is up to 3.4× faster, sending 80% of its packets in 280s
compared to 700s for the COTS.

C. Generative datasets: Data availability for situations
where elevation, pass duration, and weather conditions are
extremely similar is severely restricted. In order to broaden
the scope of our emulation experiments to encompass awider
range of satellite orbits and weather conditions, we deployed
2 or 4 satellite radios at 12 different locations, each tracking
multiple satellite passes. This allows us to generate datasets
for simulating uplink data transmission amongmultiple satel-
lite radios during the same satellite pass. Figure 13 provides
a clear overview of the interrelationships within the origi-
nal features directly recorded from collected real datasets.
We can easily observe that RTrssi, RTsnr, TDrssi, TDsnr ex-
hibit strong positive correlations, while RTdelay and RTcount

display notable negative correlations. Additionally, pass du-
ration, transmission window offset, and weather also demon-
strate noteworthy positive correlations with each other.

Based on the above observations, we establish a process to
determine feature values using their inherent physical signif-
icance and a correlation heatmap. Initially, we randomly pick
the maximum elevation from real datasets and then choose
a pass duration that aligns with this elevation. We randomly
generate varying frequencies of connection time windows
and set start times from collected real datasets, considering
the same maximum elevation and pass duration. Second,
We randomly select a value for RTsnr from the real datasets.
Then we randomly choose a TDsnr from the subset of real
datasets that match the chosen RTsnr. Following this rule,
based on determined RTsnr and TDsnr, we randomly select
RTrssi and TDrssi values. Third, we randomly chose RTdelay

from collected datasets, followed by a random RTcount based
on consistent RTdelay. In addition, we randomly set back-
ground noise RSSI from -106 dB to -87 dB ranging as real
noise level.
Generative datasets experiments: We conduct further
experiments to validate performance in various satellite sce-
narios with the generative datasets. We set the maximum
satellite elevations to 81◦, 66◦ and 28◦ with corresponding
pass durations of 45, 30, and 14 minutes at 12 different lo-
cations. Figure 14(a), Figure 14(b), and Figure 14(c) demon-
strate that SateRIoT can achieve 1.6×, 1.7× and 1.9× the data
amount of baseline during one satellite pass. the data volume
of the baseline within a single satellite pass, respectively.
Meanwhile, Figure 16(a), Figure 16(b), and Figure 16(c) high-
light that SateRIoT can achieve packet delivery latency that
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Figure 13: Correlation

heatmap of input features.

(a) Throughput of 12 gateways with

max elevation 81◦ in 45 min.

(b) Throughput of 12 gateways with

max elevation 66◦ in 30 min.

(c) Throughput of 12 gateways with

max elevation 28◦ in 14 min.
Figure 14: The throughput performance of generative data sets.

Figure 15: Throughput of

large-scale simulation.

(a) Latency of 12 gateways with max

elevation 81◦ in 45 min.

(b) Latency of 12 gateways with max

elevation 66◦ in 30 min.

(c) Latency of 12 gateways with max

elevation 28◦ in 14 min.
Figure 16: The latency performance of generative data sets.

is 4.6×, 5.6× and 3.93× lower than the COTS protocol at most,
respectively.
Large-scale simulation: We further simulate long-term
application in 7 days. We select elevation and pass duration
from the real satellite orbit and emulate the performance of
multiple satellite passes using the generative datasets model.
We repeat the 7-day experiment 100 times to obtain large-
scale simulation results to discover the performance gain of
SateRIoT further. The boxplot figures as shown in Figure 15.
The accumulative packet volume of SateRIoT consistently
exceeds the COTS baseline over the 7 days, maintaining a
steady range approximately from 1.5 to 2.0 ×.

5.2 Link Estimation Model

In this section, we compare the performance among different
link estimation trigger schemes and different link estimation
transmission window lengths. The ground truths for link
estimation during transmission windows are derived from
local logs of real outdoor experiments. Then, we use the link
estimation model and input feature derived from the logs
to predict transmission link capability by comparing it with
the real link. MAE is derived by comparing predicted values
from the link model to ground truths. We use w(windows)
1,2,3,4,5 to represent the data beacon amount during one
transmission window.

5.2.1 Accuracy. We split our datasets randomly with 20% of
the total as test datasets. The predicted accuracy of window
4 can be up to 95.07% ACC with only 0.11 MAE. The feature
importance of TD ESP and RT ESP features are 0.16 and
0.13, respectively. This affirms the significance of our fea-
ture engineering. The results affirm the reliability of our link
estimation model, which can enhance the performance of
individual gateways and optimize overall data transmission.
Comparison among different models: The comparison

results are shown in Figure 17. the accuracy is only 44.44%
and 2.12 MAE for the LDB model. This suggests that the link
information from the data packet acknowledgment is nec-
essary to guarantee accuracy. The ACCs of window 1,2,3,5
are 90.88%, 91.35%, 80.00%, 76.98% respectively. The MAEs
of window 1,2,3,5 are 0.16, 0.23, 0.70 and 0.93 respectively.
The performance for SateRIoT-1 and SateRIoT-2 are simi-
lar to SateRIoT-4, whereas SateRIoT-3 performs poorly as it
may interrupt continuous data pattern that should have been
captured in window 4, leading to inaccurate predictions of
the last data beacon with 18 classifications. When the win-
dow length exceeds 4, performance declines because only 2%
of transmission periods last longer than 120 seconds. This
highlights the importance of selecting an optimal window
length to balance accuracy and efficiency. Based on empirical
testing, we have selected w=4 as our optimal window length.
Performance with different maximum elevation and

locations: To verify the performance in different scenarios,
we evaluated our model’s performance in 12 locations and
multiple satellite elevation values. Figure 18(a) displays the
distribution of ACC and MAE for various groups of maxi-
mum elevation angles, categorized into "10-30", "30-50", "50-
70", and "70-90" degrees. All groups achieve more than 91%
accuracy and a very low MAE of less than 0.3. This suggests
that our link estimation model is versatile and functions ef-
fectively across different elevation angles and for satellites
with varying orbits. Figure 18(b) presents the distribution of
accuracy and MAE for link estimation performance across 12
locations within a farm. Notably, our model achieves nearly
100% accuracy and zero MAE at 8 locations. Three locations
surpass 87% accuracy, and one location achieves 82%, with
all MAEs remaining below 0.7. This deviation is within an
acceptable range and has minimal impact on the estimations
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Figure 17: ACC and MAE of

different link models. Figure 18: ACC and MAE of different models with various elevation and locations

and gateway performance. These results highlight the robust-
ness and reliability of our bursty link model across different
elevations and geographic locations.
Remark:Overall, the versatility of our model across varying
elevation angles, combined with its robustness in different
geographic locations, demonstrates its efficacy in diverse
operational conditions. Balancing window length and trig-
gering post-ACK receipt are key strategies to maximize link
estimation accuracy and system efficiency in LoRa networks.
To improve adaptability and scalability, it can be further
trained in more complex environments.

5.2.2 Energy Efficiency. Energy experimental settings:

We conducted experiments using real datasets mentioned in
§2.5 as test datasets. As outlined in Section 2.4, the COTS
method attempts to transmit 6 times after the gateway re-
ceives each satellite data beacon. It continues attempting
transmissions whenever a satellite data beacon arrives. ENV

stops the transmission if the cumulative packet amount
reaches its predicted value during the satellite pass duration.
LDB predicts the data packet transmission capability after
one data beacon arrives and schedules predicted attempts.
SateRIoT and SateRIoT-n stop after successfully transmitting
a predicted number of packets. Such an approach helps re-
duce energy consumption by avoiding unreliable links. We
predict and calculate the average attempts for each packet
as an energy efficiency metric during one satellite pass du-
ration. Then, we count the energy efficiency distributions
from multiple satellite passes to compare the performance.
Results: Figure 19 compares the energy efficiency distribu-
tions between SateRIoT and the baseline methods. SateRIoT
consistently requires fewer than 1.65 attempts per packet
across all scenarios, in contrast to LDB, ENV, and COTS,
which require up to 3.5, 6, and 6 attempts per packet, re-
spectively. For 80% of the cases, SateRIoT’s model prediction
keeps energy efficiency under 1.25, while LDB and ENV,
along with COTS, reach 1.6 and 1.85, respectively. Over 50%
of the cases with SateRIoT transmit packets without extra
energy waste, whereas LDB achieves this in 32%. For each
packet at one gateway, averagely, SateRIoT attains up to
3.3× or 28.15 J lower energy usage than the COTS proto-
col during a single satellite pass. We can also observe that
the model with different window lengths exhibits a similar
trend in energy efficiency, but SateRIoT performs slightly
better than other SateRIoT-n solutions thanks to the higher

accuracy. This demonstrates that SateRIoT, unlike the more
generalized link prediction methods like LDB or the COTS
protocol, utilizes precise link estimation for energy-efficient
transmissions. The overall energy saving will increase as the
number of gateways grows.

5.3 Multi-hop Flooding Protocol

Beacon flooding experiments:We conducted experiments
to evaluate the performance of flooding protocol in terms of
reliability and latency. Initially, we designated one gateway
in active mode and initiated its beacon broadcast according
to its unique transmission plan to all other gateway using
our CSMA-enabled multi-hop protocol. Then, we recorded
the received time for all packets. This process was repeated
10 times for each gateway, designating each one as the active
gateway in turn. For a setup of 12 gateways, we obtained
latency data from a total of 30 experimental runs.
One active gateway results: Figure 20(a) depicts the overall
latency distribution for all the LoRa radios. The PDR is 100%.
Approximately 70% of the standby gateways can receive the
flooding beacon from the active gateway within a latency
of less than 2 s. Furthermore, around 94% of the standby
gateways can capture the flooding beacon from the active
gateway within a 5-second window. This indicates that in
94% of cases, beacon dissemination from two active gate-
ways with a time offset of larger than 5 s can prevent packet
duplication. In our real data sets measured in § 2.5, instances
where a concurrent time offset of less than 5 s occur in less
than 2% of all effective transmission slots. This latency level
is sufficiently low to facilitate timely data transmission.
Concurrent flooding beacons experiments:We seek to
understand the performance when two gateways broadcast
their beacons concurrentlywith a random time offset ranging
from 0 s to 5 s. We documented both the arrival time of
the first beacon and the arrival times of both beacons at
each gateway. Moreover, to examine the extreme scenarios
where three gateways become active in close succession,
we orchestrated an experiment where three beacons were
broadcasted in rapid succession with a random time offset
ranging from 0 to 5 seconds, either between the first and
second beacon or between the second and third beacon. We
record the arrival times of three beacons for each gateway.
Such instances accounted for less than 0.1% of our emulation
data. This three-beacon experiment was also repeated 120
times.
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Figure 19: CDF comparison of

energy efficiency and linkwaste.

(a) One active gateway (b) Two concurrent active gateways (c) Three concurrent active gateways

Figure 20: The latency distribution of flooding beacons in multi-hop protocol.

Latency Results: Figure 20(b) illustrates that approximately
90% of the gateways can receive both beacons under 9 s,
which may result in a maximum of 4 duplicate packets. Ad-
ditionally, around 60% of the gateways can receive both bea-
cons within 5 s. Figure 20(c) indicates that around 60% bea-
cons can be received with a delay of up to 20 s. around 60%
beacons can be received with a delay of up to 9 s. When
comparing three figures in Figure 20, it’s evident that the
time required to reach approximately 80% of gateways ap-
proximately triples with the addition of each beacon.
Remark: The effective performance of the CSMA-enabled
multi-hop flooding protocol enables SateRIoT to operate effi-
ciently. Its impressive time tolerance within 5 s ensures that
concurrent cases are infrequent and hardly impact overall
data transmission or create duplicate issues.
Overall Energy Analysis: SateRIoT achieves a comparable
throughput for each individual gateway while maintaining
approximately half the energy consumption of the baseline
method. The propagation path between sensor nodes and
satellites is usually hundreds of kilometers long, dramat-
ically increasing the energy consumption to transmit the
same amount of data. For example, the power consumption
of SWARM-M138 [49] modem is 12.24 J in Tx mode, while
Semtech SX1262 LoRa radio [40] only consumes from 0.002 J
to 0.045 J [42] with a 192-byte packet from SF7 to SF12, which
is 6120× to 272× less. In the busiest situations with the most
power consumption mode with SF12, one satellite transmits
one packet; this requires data sharing with LoRa radio trans-
mission at most 12 times. The energy consumption of the
LoRa packet is much lower than the power consumption of
satellite radio.

6 RELATED WORK

Satellite Networking: L2D2 [54] presents a distributed
scheduling system to reduce latency for downlink data trans-
mission with hybrid ground stations. Umbra [53] proposes a
withholding scheduling scheme for backhaul from satellites
to large ground stations to overcome the uneven queueing ef-
fect. Li et al. [27] evaluate that the orbit of COTS satellites is
unpredictable because of collision avoidance for Starlink [46].
However, SateRIoT does not heavily rely on orbit parame-
ters but instead on coarse elevation and duration informa-
tion. STARRYNET [22] builds an open-source experimen-
tal framework to simulate complicated network behaviors.

SpaceCore [26] designs a stateless architecture to enable 5G
deployment at satellites. Serval [52] enables near-real-time
insights for latency-sensitive imagery applications by emerg-
ing computational capabilities on the satellites and ground
stations. Compared to these works, SateRIoT focuses on the
low-cost satellite IoT in rural areas.
Satellite-based IoT: The research work on satellite IoT
mainly focuses on network modeling and physical layer
design. Fraire et al. [12] present a sparse direct-to-satellite
constellation design combined with LoRa. Zhang et al.[59]
utilize Bernoulli–Rician message to enable channel estima-
tion and user activity detection. Qian et al. [35] proposed
a symmetry chirp spread modulation. Spectrumize [43] uti-
lizes satellite movement-induced Doppler shift as a unique
identifier for detection and decoding. In contrast, SateRIoT
designs and implements a network backhaul for rural area
IoT by space link.

7 CONCLUSION

To conclude, we introduce SateRIoT, a novel IoT backhaul
architecture that merges LPWA technology on the ground
with cost-effective IoT LEO satellites in space to support
efficient rural area networking. First, we design a bursty link
model to predict packet transmission capacity, reducing un-
necessary data transmission. Next, we refine the model by
selecting key features and optimizing the window length.
To achieve link sharing, we develop a multi-hop flooding
protocol to maintain data sharing among all gateways and
use a priority-based queue structure to avoid duplicate trans-
missions. We implement SateRIoT with COTS satellite IoT
and LoRa radios and evaluate the performance on real de-
ployment and real-world collected traces. The results show
that SateRIoT can achieve 3.3× less energy consumption for
an individual gateway. For overall performance, SateRIoT
reduces latency for packet delivery up to 5.6× and improves
overall throughput by 1.9×.
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