R3: Reliable Over-the-Air Reprogramming
on Computational RFIDs

DIE WU, LI LU, MUHAMMAD JAWAD HUSSAIN, and SONGFAN LI, University of Electronic
Science and Technology of China

MO LI, Nanyang Technological University

FENGLI ZHANG, University of Electronic Science and Technology of China

Computational Radio Frequency Identification (CRFID) tags operate solely on harvested energy and have
emerged as viable platforms for a variety of ubiquitous sensing and computation applications. Due to their
battery-less nature, these tags can be permanently deployed in hard-to-reach places where the possibility of
tag access is eliminated. In such scenarios, maintaining and upgrading the tag’s firmware becomes infeasible
because programming tools, including wired interface and PC-based software, are required to erase, moditfy,
or reprogram the microcontroller unit’s memory. Such limitations necessitate the demand for an over-the-air
(OTA) scheme, which can wirelessly reprogram or upgrade the firmware in CRFID tags.

In this article, we present R>—a reliable OTA reprogramming scheme that is compliant with EPC protocol
and requires no hardware upgrade to RFID reader or CRFID tag. We demonstrate our scheme on three plat-
forms, which include both software-defined as well as chip-based CRFID tags, that is, WISP5.1 and Optimized
WISP (Opt-WISP), and Spider tag, respectively. The selection also includes both the FLASH- and FRAM-based
microcontrollers. We extensively evaluate our scheme in terms of several metrics, including overall system
delay, time and energy overhead, and success rate in line with interrogation range. We foresee our endeavor to
offer the viability of OTA reprogramming and firmware upgrade for CRFID tokens under practical situations.

CCS Concepts: « Computer systems organization — Firmware; Sensors and actuators; « Software and
its engineering — Software configuration management and version control systems;

Additional Key Words and Phrases: Computational RFID, OTA reprogramming, firmware upgrade, EPC

ACM Reference format:

Die Wu, Li Lu, Muhammad Jawad Hussain, SongFan Li, Mo Li, and Fengli Zhang. 2017. R3: Reliable Over-the-
Air Reprogramming on Computational RFIDs. ACM Trans. Embed. Comput. Syst. 17, 1, Article 9 (September
2017), 25 pages.

https://doi.org/10.1145/3070720

A preliminary version of this work appeared in IEEE International Conference on RFID under a slightly different title [52].
This work is jointly supported by the National Natural Science Foundation of China under Grant 61472068 and 61502085,
and China Postdoctoral Science Foundation under Grant 2015M570775.

Authors’ addresses: D. Wu, Li Lu, M. J. Hussain, and S. Li, School of Computer Science and Engineering, University of Elec-
tronic Science and Technology of China, Chengdu, 611731, China; emails: wudie.uestc@gmail.com, luli2009@uestc.edu.cn,
{yinuodie, yinuodie}@gmail.com; M. Li, School of Computer Science and Engineering, Nanyang Technological University,
639798, Singapore; email: limo@ntu.edu.sg; F. Zhang, School of Information and Software Engineering, University of Elec-
tronic Science and Technology of China, Chengdu, 610054, China; email: fzhang@uestc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/09-ART9 $15.00

https://doi.org/10.1145/3070720

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



https://doi.org/10.1145/3070720
mailto:permissions@acm.org
https://doi.org/10.1145/3070720

9:2 D. Wu et al.

1 INTRODUCTION

With fully passive and radio frequency (RF)-powered architecture, computational radio frequency
identification (CRFID) tags are equipped with ultra-low power microcontroller units (MCUs) and
multiple different sensors, which can be used for numerous computational and sensing scenarios.
Since the inception of the WISP project [33], CRFIDs have emerged as an appealing platform for
both academia and industry. Generally, we categorize WISP-based systems as “software-defined”
CRFID tags in which both EPC protocol [13] and computational tasks are executed in the MCU.
The other family, which we term as “chip-based” CRFID tags, uses commercial chips to execute
EPC protocol and provide auxiliary power and communication interface for external MCU and
sensors. Over the past decade, a variety of diverse sensing and computation applications have been
demonstrated on these systems, including movement recognition [4, 6, 21], health monitoring [10,
53], environment sensing [17, 29], access control [19, 41], cardinality estimation [16, 60, 61], and
ubiquitous computing [24, 26, 31, 32].

A prime limitation in these systems is that the MCU in the CRFID tag is programmed with
only a specific firmware during deployment time. To update or replace a firmware, users have
to physically connect each tag with a specific programming adapter and download the patch or
new firmware through the PC-based software. The situation would further deteriorate if CRFIDs
are deployed in hard-to-reach places or when their scale grows. Known examples include struc-
tural monitoring [23, 57], bio-signal sensing [55], implanted glucose monitoring [53], and RFID
sensor network [20]. In these applications, maintaining the firmware through physical access be-
comes cumbersome. Such limitation necessitates the demand for a flexible over-the-air (OTA) re-
programming scheme, whereby a commercial RFID reader is able to wirelessly reprogram CRFID
tags through EPC protocol.

Despite the fact that the concept of OTA programming is a hot topic specifically in wireless
sensor networks (WSNs), the study on wireless reprogramming in CRFID systems has not been
performed before. Unlike battery-assisted wireless sensor nodes, transiently powered CRFIDs offer
no guaranteed reprogramming operations as they cannot afford the high-energy budget required
for reprogramming the MCU memories. Furthermore, RFID reader is restricted to transfer the data
in few-byte segments, for which the tag has to calculate the CRC and acknowledge the successful
receipt within the stringent link timings of EPC protocol. Importantly, without an operating system
to coordinate the firmware execution and wireless reprogramming, the pre-installed firmware on
CRFID tag cannot perform a self-modification as the memory of the firmware is protected during
its execution. Therefore, we need an energy-aware OTA scheme that is not only able to reliably
reprogram the CRFID, but also compatible with EPC protocol and commercial RFID reader.

To address this issue, this article presents R3, a Reliable OTA Reprogramming scheme for com-
putational RFID tags. The faced challenges and their solutions are given herein: (a) Current EPC
protocol does not provide any specific command for reprogramming operation. In our scheme,
we encode routine Write command to transmit instructions and customized data. On the tag side,
a boot-loader is designed to communicate with RFID reader and coordinate the tag operations
including firmware execution, reprogramming and error correction. (b) The communication rate
in RFID system is very low, it might not be possible to transfer complete firmware image in a
single operation. As a solution, we partition the target firmware image in multiple segments in
accordance with link timings and MCU memory. (c) The computational state will be completely
lost once the power failure occurs. In our scheme, CRFID tags transit between active mode and
low power mode to conserve harvested power. (d) For tags with FLASH based MCU, the writing
operation is not reliable when the supply voltage drops below 2.2V. To address this problem, we
propose an error detection and correction mechanism based on the concept of bitmap.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:3

N

Opt-WISP WISPS5.1

Fig. 1. Software-defined CRFIDs Opt-WISP and WISP5.1 and chip-based CRFID Spider.

We implement and evaluate R® on three tags, which belong to both families of CRFIDs. As
shown in Figure 1, the software-defined CRFID tags include Opt-WISP (left) and WISP5.1 (mid-
dle). The former is primarily based on Intel-WISP4.1DL and uses MSP430F2132 as its MCU while
latter includes MSP430FR5969. Third is the chip-based CRFID tag Spider (right) by Farsens that
uses Andy100 CRFID chip [14], and we interface MSP430F2132 as MCU. Similarly, we also evaluate
R3 with different embedded memories, that is, FLASH memory in MSP430F2132 and Ferroelectric
RAM (FRAM) in MSP430FR5969. For all three systems, we develop a user interface based on Imp-
inj Software Development Kit (SDK) [22]. We evaluate our system from following aspects: overall
system delay in reprogramming 512-byte firmware image, time and energy overhead for repro-
gramming operation, and success rate within the reader’s interrogation range. All said parameters
are evaluated for three CRFID tags and a comparison is presented.

In summary, our endeavor offers viability of OTA reprogramming and upgrade for CRFID sys-
tems. Following are the chief contributions of our work:

e R3 is an OTA reprogramming scheme for both software-defined and chip-based CRFID
tags. It is fully compatible with EPC-C1G2 protocol without demanding any modifications
to RFID reader or hardware upgrade to CRFID tags.

o R3 efficiently maps the firmware image in accordance with link timings and MCU memories.
Such memory arrangement not only offers flexibility in reprogramming operation but also
conserves harvested energy and reprogramming time.

e Based on the concept of bitmap, we present an error detection and correction mechanism
to ensure the reliability of OTA reprogramming.

e We implement and evaluate our system for three CRFID tags including Opt-WISP, WISP5.1
and Spider. Our selection also includes two type of MCU memories, including FRAM and
FLASH.

Admittedly, CRFID system becomes vulnerable as any reader can reprogram the CRFID tag as
far as it follows the EPC protocol. This shortcoming can be resolved by authenticating the RFID
reader, which we foresee as our future work.

The rest of this article is organized as follows. We introduce the related work in Section 2 and
describe the design of our system in Section 3. The error detection and correction is discussed in
Section 4. The implementation and evaluation are explained in Section 5. The article concludes in
Section 6.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:4 D. Wu et al.

2 RELATED WORK

OTA Programming in WSNs. We find promising OTA programming schemes in WSNs. XNP [8] is a
single hop protocol that broadcasts the intended firmware, while an energy efficient scheme is pre-
sented in [38] that only distributes the changes to currently running programs. Based on a multi-
hop network, Deluge [7] provides a reliable data dissemination for all sensor nodes while [43]
proposed a code distribution mechanism specifically for Mica-2 Motes. Aqueduct [34] and Tiny-
Cubus [28] proposed a scheme to distribute programs to the selected nodes. Pando [11, 12] ac-
complishes the data dissemination process by transmitting fountain-encoded packet over con-
structive interference and pipelining. As industrial products, WaspMote can be wirelessly pro-
grammed through Zigbee [25], while a user can use Bluetooth-enabled smartphone to reprogram
the nRF51822 chip [1].

Firmware Execution in CRFIDs. As OTA reprogramming is a new concept in CRFID field, we
only find few relevant works on software-defined CRFID tags. In FirmSwitch [54], the authors
remotely switch the behavior of CRFID tag by selecting amongst the pre-programmed firmwares.
A pre-determined look-up table approach is followed in [35], however, the MCU is restricted to
follow a pre-determined execution flow. Moreover, the authors presented an energy aware sched-
uling scheme [36] that maps the harvested voltage with appropriate firmware for execution. Me-
mentos [37] enables the CRFID tag to complete long-running computations by breaking a sin-
gle program into interruptible executions. DINO [27] is a software-based model that addresses
the intermittent execution through checkpointing and reducing the complexity of programming.
Wisent [44] transfers data through changing the frame length of BlockWrite and stores firmware
only in WISP 5. DewDrop [3] effectively makes use of harvested energy while treating iterative
tasks as a scheduling problem to balance the task demands in relation to available energy. Re-
searchers carried out the performance evaluation for link layer of RFID systems [5].

Hybrid Designs for CRFIDs. Pioneered by Intel WISP project [33], a large variety of software-
defined CRFID systems have been developed. BlueDevil WISP [39], EEGWISP [9], SoCWISP [30],
WISPCam [29], WISPs/g [15], SolarWISP and FrankenWISP [17], and Moo [57] are some of the
chief designs. Besides WISP and its various hybrids, we find two commercial CRFID chips, Andy100
by Farsens and SL-series by AMS AG. Both chips execute the EPC standard and additionally pro-
vide the power and communication interface (SPI) for external modules like MCU or the digi-
tal sensors. However, no OTA operation is provided in both cases. The CRFID tags based upon
Andy100 chip are used to interact with mobile robots [51]. The SL900A chip is used for soil mois-
ture monitoring [2] and reading the tagged objects [49]. Moreover, a recent work [56] describes
the design of a CRFID chip, which follows EPC C1G2 protocol and collects sensor data through
SPI interface.

Data Transfer on CRFIDs. Recent works have considered the data transmission between the CR-
FID tag and the reader. Buzz exploits the PHY layer collisions to reduce the message loss rate [50].
In Harmony [62], researchers proposed an efficient data transfer scheme that enables CRFID tag to
transfer high volume data to a commercial reader. With an aim to improve the throughput of RFID
communication, BLINK [59] utilizes the RSSI and package loss rate while Flit [18] leverages the
idle slots. QuarkNet [58] enables continuous communication under severe harvesting conditions.

3 SYSTEM DESIGN

We discuss our design from both RFID reader and CRFID tag sides. Broadly speaking, our sys-
tem has three main phases: reprogramming, execution, and verification. An overview of the pro-
posed scheme is shown in Figure 2. For reprogramming, on the reader side, the firmware image is

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:5

i Verification Instruction Decoding

R,
Reprogr

Specify Segmentatio Specify Execution Reprogramming Verification
Reset Vector Check Length
Memory Execute Target Program MCU Check Bitma
Mapping Firmware Memory e

Back to 2 Encode Error
Set Bitmap .
) 5 Boot-loader Information
Instruction Encoding
Command Response

Fig. 2. An overview of the proposed OTA reprogramming scheme R.

partitioned into multiple segments in accordance with the type of CRFID tag. Then, the reprogram-
ming instructions, firmware segments and their memory addresses are embedded in the Write com-
mand. Towards the tag side, the boot-loader decodes the reprogramming instruction, programs the
MCU memory, and sets the corresponding bits of the Bitmap. To verify the programmed segments,
the check length is embedded in the verification instruction. Upon reception, CRFID tag checks
the Bitmap and response the encoded error information. Moreover, the user can select an intended
firmware through embedding its reset vector address in the execution instruction. In this case, the
CRFID tag will execute the target firmware and switch back to boot-loader when the execution
completes.

3.1 Firmware Segmentation

The battery-assisted devices, like WSNs, can afford the high-energy budget required for repro-
gramming the MCU memory. However, CRFID tags are fully passive devices that solely function
on transient harvested power. If the size of the transmitted firmware is too large, then the repro-
gramming process might be terminated by the power failure. Consequently, the CRFID tag will
lose its running state and RFID reader has to restart the reprogramming operation. Therefore,
the firmware image should be fragmented into multiple small segments that can be practically
transferred and reprogrammed within the energy budget constraints.

In first intuition, the size of the fragmented segments should be as small as possible. However,
as MCU memories are byte- and word-programmable, the firmware reprogramming operation is
the combination of multiple byte-wise or word-wise writing operations. In practice, we observe
that the byte-wise write operation consumes nearly the same time and energy as that for word-
wise write. Therefore, the firmware image is fragmented into multiple word-length segments, so
we cannot only reduce the overall reprogramming time, but also provide reliability to our scheme.
Particularly, the CRFID chip in chip-based tags communicates with external MCU through 8-bit
SPIL the firmware image for chip-based CRFID tags is fragmented into byte-length segments.

Algorithm 1 gives an illustration for the proposed firmware image segmentation procedure.
Once a specific tag and firmware image is selected, RFID reader loads the firmware image and
measures its Length in bytes. Then, the reader searches the received tag’s ID (TagID) from the sets
of EPC numbers for both software-defined and chip-based CRFID tags (Set; and Set,, respectively).
In case the tag’s ID belongs to Sets, the firmware image is appended with a 0xFF when the Lengthis
odd. After that, the firmware image is partitioned into multiple word-length segments and saved in

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:6 D. Wu et al.

ALGORITHM 1: Firmware Image Segmentation (Executed on Reader Side)

Input: EPC number of the tag (TagID), firmware image to be reprogrammed (FirmImage| ]), firmware image
length in bytes (Length), set of EPC numbers for software-defined CRFIDs (Sets) and set of EPC
numbers for chip-based CRFIDs (Set).

Output: The i*" firmware image segment for software-defined CRFIDs (SSegment;) and chip-based CRFIDs

(CSegment;).

if TagID € Set; then
if Length mod 2 = 1then
| FirmImage[Length] = OxFF
end
for i < 0 to [Length/2] — 1 do
| SSegment; = FirmImage[2i] || FirmImage[2i+1]
end
else if TagID € Set, then
for i < 0 to Length—1do
| CSegment; = FirmImagel[i]
end

else
| return

end

an array of SSegment. When the received TagID belongs to Set,, the firmware binary would further
be partitioned into multiple byte-length segments and saved in the array of CSegment.

3.2 Instruction Encoding

3.2.1 Selection between Write and BlockWrite. With an aim to provide an EPC-compliant OTA
reprogramming scheme, we are restricted to use the existing command offered by EPC proto-
col. However, existing EPC protocol offers no specific instructions for OTA reprogramming. In
EPC protocol, only two of the Access Commands (Write and BlockWrite) can be used to transmit
customized data from the reader to the tag [13]. The Write command is one of the mandatory
commands in Access Round, which can transfer a single 16-bit customized data to the tag. The
BlockWrite command can transfer any number of 16-bit words so there is less back-and-forth com-
munication between the reader and the tag, as compared with Write command. Nevertheless, Write
command is more suitable for our scheme than BlockWrite command. On one hand, the firmware
image is fragmented into multiple byte- or word-length segments based on the type of the CRFID
tag to be reprogrammed. The 16-bit data field of Write is enough for either byte-length segment
or word-length segment. The time and energy overhead for processing Write command is lower
than that for BlockWrite command as the command length of former is shorter. On the other hand,
BlockWrite is an optional command that is not supported by all CRFID tags, for example, chip-
based Spider tag. As a result, we adopt the mandatory Write command and use it to transfer the
fragmented segments to the CRFID tag.

3.2.2 Instruction Encoding for Software-defined CRFID Tags. For software-defined CRFIDs, we
encode the instructions in Write command by embedding the parameters in three fields: 2 bits of
MemBank field, 16 bits of WordPtrfield and 16 bits of Data field, as shown in Figure 3. Normally, the
tag memory is logically separated into four distinct banks, that is, Reserved memory, EPC memory,
TID memory, and User Memory. However, software-defined CRFID tags execute the EPC protocol
in the MCU and the RAM is used instead of the aforementioned memories. Therefore, we can

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:7

Command MemBank WordPtr Data RN CRC
(8 bits) (2 bits) (EBV) (16 bits) (16 bits) (16 bits)
Address | RN16@Word |

Pointer | To Be Written |

11000011

Handle CRC

Initialization: 11000011 . Starting Address ‘ Image Size ‘ Handle  CRC

Reprogramming:| 11000011 .Memory Locatfon‘ Image Segment ‘Hand!e CRC

Execution: 11000011 . Target Address ‘ 0x0000 ‘ Handle  CRC

Verification:| 11000011 . Check Length ‘ 0x0000 ‘Hand!e CRC

Fig. 3. Instruction encoding for software-defined CRFIDs.

utilize the MemBank field as a sign to differentiate between following instructions: initialization
instruction, reprogramming instruction, execution instruction, and verification instruction.

For initialization instruction, the MemBank field is coded as 004, and the following WordPtr and
Data fields indicate the starting address and size of the firmware image to be reprogrammed. For
reprogramming instruction, the MemBank field is coded as 01, and the WordPtr and Data fields
represent the memory location and its corresponding 16-bit firmware image segment, which is par-
titioned during the firmware image segmentation phase. For execution instruction, the MemBank
field is coded as 10, and the WordPtr field represents the address of reset vector for target firmware
to be executed. For verification instruction, that is, the reader instructs the tag to check the er-
roneously reprogrammed image segments, the MemBank field is coded as 11, and the WordPtr
field represents the number of image segments to be verified. Before transmission, the Data
field for both execution and verification instruction is set as 0x0000. Particularly, the reprogram-
ming instruction can also be used for error correction. In this case, the erroneous reprogrammed
segment and its corresponding memory location are embedded in Data and WordPtr fields,
respectively.

3.2.3 Instruction Encoding for Chip-based CRFID Tags. Unlike software-defined CRFID tags,
the chip-based CRFID tag (i.e., Spider tag in our scheme) is interfaced with an external MCU
through SPI interface. The internal architecture of the Andy100 chip restricts the data transfer
to a maximum of 8 bits at one time. When the MemBank field of a Write command is set as 11,
the Andy100 chip will transfer the 8-bit least-significant bits (LSBs) of the Data field to the ex-
ternal MCU through 8-bit SPI. Based on such a working scheme, the following procedure shown
in Figure 4 is devised: we define the 8 LSBs of Data field as S; in the ith Write command when
the MemBank field is set as 11;. To start the reprogramming operation and initialize the mem-
ory to be reprogrammed, the instruction is defined as S;||S;+11|Si+2 = AAp||BB||CCy, which is
followed by the starting address (contained in S;43||S;+4) and the number of firmware image seg-
ments (contained in Sj;s5|/S;i+¢). The following two 8 LSBs (S;4+7||Si+s) represent the reset vector
of the firmware image to be reprogrammed. Then, the fragmented image segments are embed-
ded one by one from S;9. For firmware verification and error detection, the opcode is defined as
SillSi+11lSi+2 =DDy|| DDy || DDy, the following two 8 LSBs represent the number of firmware seg-
ments to be checked. To execute the firmware, the default instruction is defined as S;||S;11|Si+2 =
EEL||EER||EEp, which is followed by the reset vector address of the target firmware embedded
in S;i43||Si+4. In particular, a correction instruction is used to correct the erroneously programmed

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:8 D. Wu et al.

0xC3 ‘ 11 ‘ Addr ‘ Data ‘ Handle CRC

{ 8 MSBs \ 8LSBs (S) \

eee S, Syi Siz Siuz Sius Sus Sie Siz Sz Siro Sirio eee

Reprogramming:| *++ |OxAA|OxBB | 0xCC iﬁl,cﬁg;g Irgrgge \5:cst%tr Sego | Seg; | eee
Verification:| e+« |0xDD|0xDD|0xDD g}iﬁz coe
Execution:| «e+ | OXEE | OXEE | OXEE AT‘%?:; coe
Correction:| =+« | OXFF | OxFF | OxFF| 7 10P€ | Address, | Segy| Address; |Se
orrection: X X X Corrected 0 Jo 1 g1 | eee

Fig. 4. Instruction encoding for chip-based CRFIDs.

image segments. To start the error correction phase, the instruction is pre-fixed with S;[|S;+11[Si+2 =
FFy||FFy||FFy, while the number of total segments to be corrected are passed in the next byte
(Si+31|Si+4). The following bytes from S;,5 contain the memory address and correct segment of
each identified error. In case a large number of error segments are encountered, reader repeats the
same procedure in a sequential manner.

3.3 Instruction Decoding and Execution

In software-defined CRFIDs, the boot-loader executes the EPC protocol, decodes the commands
and parses the parameters embedded in three fields of Write command. In contrast, chip-based
CRFID tag first decodes the EPC commands within its CRFID chip and triggers the external MCU
when the Write command in which the MemBank field is set as 11, is received. Based on differ-
ent working schemes, the instruction decoding process is executed differently for both types of
CRFIDs.

In case of software-defined CRFIDs, once the Write command is received, the boot-loader parses
the command and checks the CRC value. If an invalid CRC is received, then boot-loader ignores
the command and waits for the next instruction. Otherwise, it executes the instruction and replies
a Success to the reader after the execution is complete. As stated earlier, the value of MemBank
is the opcode that indicates the next task on the tag, that is, for MemBank=00;, the boot-loader
initializes the memory to be reprogrammed based on the starting address and image size parsed
from WordPtr and Data fields, respectively. For MemBank=01;, boot-loader sets the tag to repro-
gramming mode and writes the image segment of Data field to the address stored in the WordPtr
field. Before replying the Success, boot-loader verifies the reprogramming results and sets the cor-
responding bit in the bitmap region (the detailed process for bitmap is discussed in Section 4). For
MemBank=10y, the boot-loader shifts the content in WordPtr field (reset vector address of target
firmware) to the Program Counter register that holds the address of the next instruction to be ex-
ecuted. For MemBank=11y, boot-loader sets the tag to verification mode, collects the positions of
the erroneously reprogrammed segments based on the number contained in WordPtr (number of
segments to be verified) and encodes the error information using collected data. The verification
and error correction process will be explained in detail in Section 4.

For chip-based CRFIDs, the CRFID chip will initialize the SPI communication with external
MCU once a valid Write command accessing the data stored in User Memory is received. In the
external MCU, the boot-loader receives the SPI data, labels the ith received 8-bit data segment as

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:9

S; and stores them in the RAM. Whenever the reprogramming opcode (AAj, BBy, CCp,) is received,
the boot-loader sets the MCU to reprogramming mode and initializes the memory based upon
next four bytes (Si+3, Sit+4, Si+5 and S;i4¢ that contain the starting address and the length of the
firmware image). Then, the reset vector (S;,7||S;+s) is placed at the end of the initialized memory
segment. After that, the following received image segments (from S;,9) will be written one after
the other from the starting address (S;43//Si+4). If an execution opcode (three consecutive EEy) is
received, then the boot-loader stores the next two bytes of SPI data in Program Counter to execute
the target firmware. In case a verification opcode (three consecutive DDy,) is received, boot-loader
moves the tag into verification mode, prepares for any error information based the next two bytes
(Si+3l1Si+4). When the correction opcode (three consecutive FFy,) is received, boot-loader corrects
the erroneous firmware segments based on the number to be corrected (S;13||S;i+4) and the image
segments along with their corresponding memory locations.

3.4 Memory Management

To minimize the reprogramming overhead and provide our scheme with stability, the memory
management phase relates to allocating the MCU memory to boot-loader, firmware images and
their corresponding reset vectors in accordance with the MCU memory before the CRFID tag is
deployed. In particular, a specific memory region is reserved for the purpose of error detection and
correction. In our case, the Opt-WISP and Spider tags include FLASH-based MCU (MSP430F2132),
whereas WISP5.1 includes an FRAM-based MCU (MSP430FR5969), which is one of the latest addi-
tions to the MSP family of ultra-low power MCUs.

For FLASH-based MCU, the main memory is physically divided into multiple 512-byte segments.
Despite single byte or word can be written to the FLASH memory, the segment is the smallest unit
for data erasure [45, 46]. To reprogram the tag with FLASH-based MCU, we first need to erase the
complete memory segments to be reprogrammed. On the contrary, for FRAM-based MCU, there
is no specific memory segmentation and it can be logically partitioned by the memory protection
unit [47, 48]. To reprogram the tag with FRAM-based MCU, we simply need to write the new
firmware image at the specific memory location without performing the erase operation, as in
FLASH-based MCUs.

In our scheme, the memory management for CRFIDs with FLASH-based MCU (Opt-WISP and
Spider) and FRAM-based MCU (WISP5.1) is shown in Figure 5. For tags with FLASH-based MCU,
our scheme places each firmware image at the beginning of a memory segment, and the reset
vector of each firmware image is required to be placed at the last two bytes of each segment. As a
result, there is no overlapping in memory segments for different firmware images. Such placement
cannot only provide the flexibility of erasing each individual firmware image, but also minimize
the erasing overhead in terms of time and energy. For tags with FRAM-based MCU, as the FRAM
module has no specific memory segmentation and it can be overwritten in a similar fashion to
RAM without any special requirements. The firmware images and their reset vectors are stacked
from the beginning of FRAM.

As the execution of CRFID tags can be terminated by the frequent power failure, our system
should be able to restart its execution from a preset point. By default, whenever the MCU is
powered-up, the Program Counter in either FLASH-based MCU or FRAM-based MCU is loaded
with the address contained at reset vector location (0xFFFE). We leverage this feature for stabil-
ity and place the reset vector of boot-loader at 0xFFFE. As a result, whenever the tag is powered
on for the first time or a power failure occurs, the execution will start from boot-loader. In addi-
tion, to reduce the time and energy overhead incurred by verifying the reprogramming results,
a specific memory region (Bitmap), which stores the verification results of the reprogrammed
firmware image is allocated during memory management phase. In our case, one memory segment

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:10 D. Wu et al.

MSP430F2132
(E000,-FFFF,)

Low  E000, F800, FOFF, FEFE, o, High
Address Address

MSP430FR5969
(4000, -13FFF,)

4000, FFFF, 11000, 13FFF,,
Boot-loader Reset Vector Firmware Image Bitmap Vacant

Fig. 5. Memory management for CRFIDs with FLASH-based MCU (MSP430F2132) and FRAM-based MCU
(MSP430FR5969).

(Segment 3) is allocated for Opt-WISP and Spider tags, while a 4KByte memory region (from
0x10000 to 0x10FFF) is allocated for WISP5.1.

3.5 Power Management

CRFID tags are power constrained devices that use the MSP430 series of MCUs to perform the
computation and sensing tasks. A key challenge of CRFIDs system is that the execution on ex-
isting tags is not guaranteed as the power in the energy storage capacitor might drain before
the task completes. In fact, CRFID tags receive nearly a constant amount of power when the in-
terrogation range is fixed and the tag is not performing any task (sleep mode). However, when
the CRFID tags are performing computation or sensing tasks, the power consumption is signifi-
cantly higher than harvested, and the energy storage capacitor discharges to provide power for
the tasks. In case the power in the energy storage capacitor is totally drained, the task will be
terminated.

To address this issue, we first look into the current consumption of the MCU. Broadly speak-
ing, the MSP430 MCUs provide one active mode and several software-selectable low power modes
(from LPMO to LPM4) to extend the lifetime of the energy constrained devices. Figure 6 shows
the current consumption of these operating modes for MSP430FR5969 and MSP430F2132, respec-
tively. The figure shows that the supply current in active mode ranges from 210pA to 1845pA
for MSP430FR5969 when the working frequency increases from 1MHz to 16MHz. Similarly, for
MSP430F2132, the supply current in active mode are 450uA at IMHz and 5750uA at 16MHz. On
the contrary, the supply current for LPM4 is 0.3pA for MSP430FR5969 and 0.1uA for MSP430F2132.
Moreover, the current consumption for LPM4 is the lowest among all these operating modes and
it is orders of magnitude lower than that for active mode for both MCUs. If the CRFID tag is in
LPM4, then the CPU is stopped and all clocks are disabled. Therefore, the total current consump-
tion would be in a few micro-amps so the harvested power can charge the energy storage capacitor.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:11

10000 ; ; T T T T T : 10000 ; ; T T T T T T
1000 " 1000 ///_.
T | z
g = R ——
[ [
t t v v v v v
S S
O 10 | < O 10 -
> —=—AM ——LPM0——LPM1 > —=—AM ——LPM0——LPM1
o —v— LPM2 —¢— LPM3 —<— LPM4 g —v— LPM2 —— LPM3 —<—LPM4
A b : : v 7 S
D s S 3
01 01t < < < < “
[} 2 4 6 8 10 12 14 16 [} 2 4 6 8 10 12 14 16
MCU Frequency (MHz) MCU Frequency (MHz)
(a) Supply current for MSP430FR5969. (b) Supply current for MSP430F2132.
Fig. 6. Supply current vs. MCU frequency for active and low power modes.
Power on Reset Initialize MCU Power on Reset Initialize]MCU
Memory > Memory
(AM) (AM)
Enter
: Boot-loader Write Image
Write Image
Segment > Segment
(am) Execute Target Gl
Execute Target
Har\(lf;:wP;;wer Firmwareg Firmware
) (Am) Encode Error JM) Encode Error
] A Information A I»| Information
eV (AM) (AM)
9% a0? \
Y et Y St .
. W Transmit Error Wait for SPI |« Transmit Error
Wait for CMD -— Process CMD Information Interrupt [, ProcessSPIDatal | | * i\ ormation
(LPMa) |« (Am) (AM) (tpma) | (Am) (Am)
L ? ) L L
(a) State diagram for software-defined CRFIDs. (b) State diagram for chip-based CRFIDs.

Fig. 7. State diagram of power management for software-defined CRFID and chip-based CRFID tags.

In our scheme, we minimize the energy consumption of the CRFID tags by repetitively transiting
between LPM4 and active mode. Despite the CPU is stopped in LPM4, the proposed scheme is
still feasible because the interrupt event can wake up the MCU from LPM4. Once waked up, the
MCU works in active mode to serve the request and restores back to LPM4 on its return from the
interrupt service routine.

The state diagram of power management for both software-defined and chip-based CRFIDs is
shown in Figure 7. For software-defined CRFID tags, when they are within the interrogation range
of a reader, they start to harvest power and the voltage supplied to MCU begins to rise. When
the voltage touches approximately 1.75V, the MCU is powered on and starts to load and execute
the boot-loader. In our design, the boot-loader immediately enters LPM4 to wait for the hardware
interrupt (supervisor trigger) from the energy supervisor. Such design avoids the oscillation of the
system during the startup. When sufficient power is harvested (the voltage increases to around
1.9V), the energy supervisor generates a hardware trigger and boot-loader starts to wait for the
EPC command from the reader in LPM4. When the communication starts from the reader’s side,
each symbol of the command would result in a port interrupt, which wakes up the MCU to work in
active mode. The boot-loader stores the received symbol and moves back to LMP4 to wait for the
next symbol. Once enough symbols are received, the boot-loader processes the command following

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:12

D. Wu et al.

Table 1. Minimum Voltage Required for CPU Operation and Memory Writing

Microcontroller Memory Type | Minimum V¢, | Minimum Vyem
MSP430F149/413/1232 FLASH 1.8V 2.7V
MSP430F2012/2132/2247 FLASH 1.8V 2.2V
MSP430FR5736/5969 FRAM 1.8V 1.5V

EPC protocol if the command belongs to either select or inventory commands (i.e., Select, Query,
QueryAdjust, QueryRep, ACK, and NAK). In case a Write command is received, the boot-loader
executes the instruction based on the parameters parsed from MemBank field and moves back
to LPM4 to wait for the next command. In particular, after processing the execution instruction,
the MCU cannot directly move back to LPM4 to wait for the next command as the MCU needs
to reboot to load the boot-loader after executing the target firmware. In case a Read command is
received, tag replies the encoded error information in active mode and moves back to LPM4 upon
completion.

For chip-based CRFID tag, the storage capacitor charges when the tag is brought within the
read range. Different from software-defined CRFID tags, a voltage monitor is included to manage
the power supply in chip-based CRFIDs. As a result, the voltage monitor feeds the MCU when the
voltage of the energy storage capacitor is higher than 2.4V and disconnects the MCU when the
voltage is lower than 1.8V. Due to this architecture, the power is sufficient to load the boot-loader
and the repeated brownouts during the system startup are therefore avoided. After loading the
boot-loader, the MCU moves into LPM4 and waits for the SPI interrupt from CRFID chip. During
both Write and Read commands, the MemBank field is set as User Memory, which results in an
SPI interrupt to wake up the MCU from LPM4. For Write command, the 8 LSBs of Data field are
transferred from CRFID chip to the MCU. As a result, MCU stores these bits and returns to LPM4
to wait the next SPI interrupt. Once the encoded instruction is received, MCU moves to active
mode, processes the instruction and finally moves back to LPM4. For Read command, the CRFID
chip wakes up the MCU from LPM4, pulls 8 bits of encoded error information and transmits the
data to the reader.

4 ERROR DETECTION AND CORRECTION
4.1 Error Source—Insufficient Power

To provide our system with reliability, whenever the CRFID tags check the packet integrity after
receiving the instructions from the reader by verifying the CRC. However, in practice, the correct-
ness of reprogramming results still cannot be guaranteed. Typically, the on-chip memory (FLASH
or FRAM) in MCU shares a common voltage supply with the CPU instead of using separate power
rails [40]. For most of the MCUs used in the CRFID tags, the minimum working voltage of CPU
specified by the manufacturer is different from the voltage required for writing on-chip memories,
as shown in Table 1. Generally, for FLASH-based MCUs, memory writing requires a higher voltage
than the CPU operation (Viuem > Vepu)- If the supply voltage is higher than V;,¢, then consistent
and correct writing operation will be achieved. However, if the supply voltage is between V¢,
and Vepy, the FLASH memory can still be programmed but the correctness of memory writing is
not guaranteed. Once the supply voltage is lower than V;,,,, the MCU will lose power and eventu-
ally stop working. In case of FRAM-based MCUs, the lowest voltage required for memory writing
is lower than that for CPU (Vipem < Vepu). If the supplied voltage is higher than V,,,, then the
results of memory writing would be consistently correct, while if the supplied voltage is lower
than V¢, the MCU will stop working.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:13

100

80 — 1

—l— MSP430FR5969(a) 1
—@— MSP430FR5969(b)| -
—A— MSP430F2132(a)
—¥— MSP430F2132(b)

60 —

40 -

Error Rate (%)

20

1.70 175 1.80 1.85 1.90 1.95 2.00 2.05 2.10
Supply Voltage (V)

Fig. 8. Error rates for writing data to MSP430FR5969 and MSP430F2132 with different supply voltages.

To further understand the behavior of memory write operation under low voltage against the
extend of errors incurred, we investigate the reprogramming scenario under decreasing voltage.
We find that writing data to a memory cell is actually applying an electric field across the cell. When
the supply voltage is lower than the minimum requirement specified by the manufacturer, the
strength of the applied electric field might not be enough to change the logic state of the memory
cell. By default, the logic state of the memory cells for both FLASH and FRAM are initialized with
a logic state of “1.” As a result, transition from “1” to “1” can obviously succeed and the error
will only occur during the transition from “1” to “0.” Therefore, to check the error rate at low
voltage inputs, we write “0”s to the on-chip memory of both types of MCUs (MSP430F2132 and
MSP430FR5969). As shown in Figure 8, for MSP430F2132, the error rate varies when the supply
voltage is lower than the manufacturer-specified threshold. For MSP430FR5969, as the voltage
requirement for FRAM is lower than that for CPU, the writing operation will always succeed if the
CPU is working properly. In addition, we observe that the error rate slightly varies for different
chips of the same MCU type.

As discussed in Section 3.5, once the tag is working in active mode, the power harvested is
far from enough to meet the power consumed. Consequently, the energy stored in the storage
capacitor is continuously consumed and voltage supplied to the MCU decreases. Take Opt-WISP
as an example, the minimum voltage required for memory writing is 2.2V whereas the CPU ne-
cessitates 1.8V during program execution. When supply voltage drops between 3.3V and 2.2V, the
reprogramming instruction will be executed successfully and writing results are correct. However,
once supply voltage drops between 1.8V and 2.2V, the reprogramming instruction can be executed
properly but the reprogramming errors might occur. When supply voltage drops below 1.8V, the
CPU cannot work properly and as a result, the reader will lose the tag.

4.2  Error Information Encoding

The errors incurred in writing memory at low voltages necessitate an efficient mechanism for error
detection and correction. As CRFID tags are highly constraint in harvested energy and limited by
tight communication link timings, any error detection and correction mechanism should therefore
be lightweight. To this end, we devise an error detection mechanism that maps the result of each
reprogrammed image segment to a single corresponding bit at a specific memory area, which we
term as bitmap. This way, the results of a success or failed write operation are mapped to a single

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:14 D. Wu et al.

Firmware Image Region Firmware Image Region
O|{1|1|1|1]|0|1]|1
O|{0|1|1|1|O0Of1[O0O)JO|1|{1[{0O[|O|1]|0]|1 1{0{0f(1({1[0(O(1]JO(1[0O[O[OfO[O|1
o0 e [ N ]
Error
1/0(1(0f{1[1({0|0]J1|0|O0|O|1|T1|1]|1 0{1|0(0|{0O|1|1|{0]JO|1|1|1|1|1|1]0
1({1(1|1[1]|0(1
Correct ; : ) ) N
°§" Bitmap Region Bitmap Region Correct
0[{0|0|O|O|1(0OJO[0O(O[O[O|O|O]|O 0({0{0|0O|O|1|0fjO[O|O|O]|O|O|O]|O
olofofof1][of1[ofo]1]ofo[0]o]0]0] 5™ olojofo|1]{o|1|ofo[1][0lo]0f0]0]0
eee / XK /
0|{1|{0|0|0O(0OfO[OJO|O[O|O|O0]|O0 1 0[{1{0[{0[{0|0[0|0OJO[O|O0]|0]|1 1(1
T(1(1|1|{1|1|1|1jrfr|rfrfrjr1j1j1 T(1(1 (11111 frjrjr|rf1j1j1
(a) Bitmap in software-defined CRFID tag. (b) Bitmap in chip-based CRFID tag.

Fig. 9. Bitmap for software-defined and chip-based CRFID tags.

bit in the bitmap. The major advantage of bitmap is that the reader can validate the reprogramming
operation by merely checking the bitmap, instead of reading all the written firmware segments. In
a similar manner, the error correction becomes handy as the reader just re-sends the erroneously
written (and identified) segments instead of sending whole firmware image again. In case of FRAM
where Viyem < Vepu, all the bits will be written correctly however our mechanism is still applicable
to other families of MCUs in which the CPU voltage is lower than FRAM.

During firmware segmentation phase, the firmware image is partitioned into multiple byte-
length or word-length segments based on the type of CRFID tag (Section 3.1). As shown in Fig-
ure 9, each bit in bitmap region is mapped to the reprogramming result of 16-bit and 8-bit firmware
image segments for software-defined CRFID tags and chip-based CRFID tags, respectively. Since
the memory reading operation can be realized across full voltage range of the MCU. Therefore,
each time the boot-loader performs the reprogramming operation, it reads the address of the re-
programmed segment and compares the writing result with the data received from the reader. If
the writing result is correct, then the corresponding bit in the bitmap region is set to “0”; other-
wise, it is set to “1” (left unchanged). Consequently, even if the tag is starved of harvested power
and cannot write the result into bitmap, the bit under operation will remain in its default state
(“1”). Working this way, the tag validates the written segments against the image received from
the reader, and writes the results to the bitmap region. We highlight that the bitmap is placed in
the FLASH or FRAM memory instead of RAM, since the tag will lose the checking results once the
power in the energy storage capacitor is drained.

Despite the use of bitmap can efficiently reduce the time overhead in checking the repro-
gramming errors, a more efficient transmission method is required to reduce the back and
forth communication in error information acquirement. More in detail, once the verification
instruction is received, boot-loader sets the CRFID tag into verification mode, loads the bitmap
results based on the check length (number of reprogrammed firmware segments), and encodes
the error information for erroneously reprogrammed segments. For encoding process, multiple
16-bit binaries are utilized to encapsulate the error information for N reprogrammed segments.
Each 16-bit stack indicates the location of all the erroneous image segments amongst every 8
reprogrammed image segments. The first 8 bits represent the value of the bitmap while the last

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:15

ALGORITHM 2: Error Information Encoding (Executed on Tag Side)

Input: Number of Segments to be verified (N) and Byte read from bitmap region (x;, xj+1, . . ., Xj+7), where

x; is defined as the i*" bit of bitmap region, i mod 8 = 0.
Output: 16-bit Error Information Piece (ErrorInfo).

n=1+N/8

while n > 0 do

if Ax; #0, (jei,i+1,...,i+7)then
offset =i/8
(Y0, Y1, - - - » y7) = DecToBin(offset)
Errorinfo = (xi, Xi41, - - -, Xi+7, Y0, Y1» - - - » Y7)
n=n-1

end

else

| n=n-1
end

end

Note: DecToBin(x) is a function transforming x from Decimal to Binary format.

8 bits represent the address offset of that value, which is denoted as offset. Algorithm 2 explains
the encoding procedure for error information. The algorithm transforms the data format of
address offset from decimal to binary, and appends the result to the end of the values read from
bitmap region. For example, if the reprogramming error occurs in 19" and 21** image segment,
the value of the third byte in bitmap would be 0x10, that is, the value from 16" bit to the 24" bit
of bitmap region is (0,0,0,1,0,1,0,0), the input of the encoding algorithm would be (xg, xo, . . ., x15) =
(0,0,0,1,0,1,0,0). In this case, the address offset in bitmap region is offset = 2, and the output of
error information encoding would be (0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0). In such encoding algorithm,
each piece of error information (16 bits) could indicate eight in maximum while only one in worst
case position(s) of erroneously reprogrammed segment(s).

4.3 Error Location and Correction

As EPC protocol adopts an Interrogator-Talks-First (ITF) procedure, the tag cannot actively reply
the encoded error information back to the reader. Before transferring the error information, RFID
reader has to first send a verification instruction so the boot-loader can generate the encoded error
information. After that, reader acquires the information through Read command in Access round
while is followed by the reply from the tag’s side. In the first intuition, the Read can be used to
transfer any customized data from the tag to the reader. However, due to the computational con-
straints and tight link timings of EPC protocol, the data size that could be successfully transferred
from the tag to the reader is quite limited [62]. Therefore, for software-defined tags, the 16-bit
encoded error information is replied during each during each Read command. For chip-based CR-
FID tags, the data size is restrained by the 8-bit SPI interface between the external MCU and the
CRFID chip. Therefore, each time the Read command is received from the reader, the CRFID chip
initializes the SPI communication and pulls 8 bits from MCU. For each piece of 16-bit encoded
error information, these tags repeat the reply operation twice. To indicate the completion of the
reply (encoded error information), the tag sends the end-of-signaling bits in which first 8 bits are
initialized to “0”s.

After the transmission of continuous Read command to request for the error information, the
reader decodes the received information following Algorithm 3 if the end-of-signaling bits are

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:16 D. Wu et al.

ALGORITHM 3: Error Information Decoding (Executed on Reader Side)

Input: Error Information get from the tag’s reply to a successful Read command (zg, z1, . . ., z15), where z; is
defined as the i*" bit in the received error information, i € {0,1,...,15}.

Output: Vector of positions for erroneous segments (E)
while dz; #0, (i€0,1,...,7) do
Ojfset=215'20+Zl4-21+---+23'27
ar =offsetx8 +k (ke€0,1,...,7)
Z = (20 cQp,Z21 " A1y ... 527 -0(7)
end

Note: non-zero element in Z represents the sequence number of the erroneously reprogrammed segments.

received. For each piece of 16-bit error information, the decoding result is an error position vec-
tor, which indicates the sequence numbers of the erroneous image segments. For example, if
the 16-bit error information is 0x1402, that is, (z¢, z1, . . . , z15) = (0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0), the
decoding result would be (0,0,0,19,0,21,0,0), which indicates reprogramming error in the 19° h and
21*" image segments. As the reprogramming errors only occur in the transition from “1” to “0”,
the erroneous firmware segments can be corrected without erasing the memory location in ad-
vance. Therefore, for software-defined CRFID tags, the reader can utilize reprogramming instruc-
tion (MemBank=01;) to embed each image segment in the Data field and its memory location
in the WordPtr field. For chip-based CRFIDs, the correction instruction to retransmit the image
segments.

5 IMPLEMENTATION AND EVALUATION

We evaluate R® on three platforms, that is, WISP5.1, Opt-WISP and Spider CRFID tags. The Opt-
WISP is based upon the design of WISP4.1DL but it is retrofitted with two independent antennas
and power harvesters. The first antenna-harvester pair is used for realizing receiving EPC com-
mands, power harvesting and backscattering operation similar to WISP4.1DL. The second antenna-
harvester pair is used exclusively for sensing applications. Such architecture results to higher out-
put ranges and high-end sensing capabilities. Moreover, the MCU is fed with 3.3V instead of 1.8V
(as in WISP4.1DL). The higher supply voltage is the prime reason that we use Opt-WISP in place of
WISP4.1DL because the supplied voltage for WISP4.1DL is always much lower than the minimal
writing requirement for MCU (2.2V). In case of Spider tag, the CRFID chip is interfaced with an
evaluation board of MSP430F2132. This way, we evaluate R® on MCUs with two different on-chip
memories, FLASH in MSP430F2132 and FRAM in MSP430FR5969. A Graphical User Interface based
on the software development kit of Impinj Speedway R420 is developed. To have a comprehensive
evaluation of our system, we evaluate the overall system delay, energy overhead and the success
rates at different interrogation ranges.

5.1 User Interface

As shown in Figure 10, the User Interface connects to a commercial reader and displays the infor-
mation regarding the tags in the top left window. Once a specific tag is selected, its parameters are
displayed in Tag Parameters panel. The memory addresses of the firmwares inside MCU memory
are displayed towards the bottom of this panel in Firmware Address field. The memory address
of boot-loader is displayed within braces to distinguish from other firmware images, for exam-
ple, {0xFA00-0xFFC0}, which shows the starting and ending address of the boot-loader. To give a
graphic illustration, we also portray the memory addresses of all existing firmwares in Memory

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:17

R i SO
Salert Firmware
 Adress: 192.1680.7 Disconnect
- ; Name SareBries Plarform
Sermings Sear Lnventery Clear el 904 D ISP
Towg o op s v
EEPROML o O WISE
EPC Number Time Eacn plica x4 Sgider
00 3353 DIDD-1 40- 8- b 4 Base L] wsrsl
AABR-CODD-1123-1344-0041-000C 195 P
E100-2019-£510-0079- 13004F33 (T4 SECH
E100-3098- 79010054 BIBs- 4540 a5 Jaring Update
‘Reset Vector Address: OFTFE
Area Addrews Num Results.
Toer v guil Read Firmware Fyecutian.
T.lp.ﬂ-m Target Firmuare Addris: Execute
EPC Number:  AARB-COD0-1127-3342-0041-000C
LT OV Firmware Verificarisn
Alemary Type: FLas Number: Verify
Mlemory Size:  axiytes
R - Memary Arrangement
Name: Accel, EEPROM, (BootLoades)
oxf000 I (1 1FF
Firmware Adderss: our2o0 N (x5 3FF
ouf (001w B, (uFO00-0uf 1 56, [SuFADG-0aF FCO] e woi
: inEsin I |} TFF
e P S — ———m=i
OREBFE EBFF, OF3FE nF3FF {IFFFE RFFFF] EAN 1 DuERFF
xE O I INFF
Birmap Reghan: TsEE ThEFFF
e o N (FIFF
ooF2o0 | oFIFF
OxF 400 OxFSFF
o 0FTFF
LFe N (:FYFF
OTAProgramming | 5 Lot TnFAN inFRFF
CRFID Syas T OaFDFF
Ver224 Claar Log il S
b g o 2 Flrswar Bostisader [ Reoet Veosss [N Biteusp

Fig. 10. User Interface passes encoded instructions through commercial RFID reader, receives the tag’s reply
and displays the results.

Arrangement panel. As shown in bottom right of the figure, the colored area marks the firmware
images, reset vector is shown at the end of the memory segment while the blank area indicates the
location of empty memory. Particularly, the green region indicates the area allocated for bitmap. To
execute the firmware, the user can input the address of intended firmware in Firmware Execution
panel.

For reprogramming operation, the user first needs to select the desired firmware in Select
Firmware Panel. Then, the Over-the-Air Programming panel provides accessibility to specify the
memory location for the selected firmware that comprising of Starting Address and Reset Vector
fields. This way, a new firmware can be remotely transmitted to a specific memory location of
the tag through Write Command. For firmware verification, the user inputs the number of seg-
ments that has been successfully transferred to tag, then uses the read command on the top of Tag
Parameters panel to get the error information from the tag.

5.2 Overall System Delay

Since EPC protocol strictly limits the interrogation timings, the reader will lose the tag once these
link timings are not followed because of computational overhead or inadequate energy towards
the tag’s end. Under such case, it becomes important to evaluate the time overhead incurred by R*
during reprogramming operation. The experimental setup is shown in Figure 11. We use an off-
the-shelf Impinj Speedway R420 RFID reader with a 6 dBi circularly polarized antenna while the
transmission power is set to 30 dBm. In this evaluation, we measure the overall time consumption
for reprogramming a 512 bytes firmware image on Opt-WISP, WISP5.1 and Spider. The evaluation
includes the time consumption incurred by uplink and downlink communication, memory repro-
gramming and error detection and correction. The evaluation is carried out once the reader and
tag are spaced at 0.5 and 2 meters and the MCU clock for three CRFID tags is set to minimum and
maximum frequencies, that is, 1 MHz and 16 MHz. At each interrogation range, the experiment is
repeated for 50 times.

The experiment results are shown in Figure 12. For the interrogation range at 0.5 meter, the av-
erage time delay for Opt-WISP, WISP5.1 and Spider tags at 1 MHz is 15.21, 15.61 and 29.83 seconds

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:18 D. Wu et al.

j - | spid ——
36 | —@—Spider IMHz AP‘ er 083 l 36 j —@— Spider IMHz
34 || —O—Spider 16MHz Vi ~29.838 | | —0— spider 16MHz
—| —w— WIsPs.I IMHz Avg g, =29.37 s [' 4 4| - \515?5'1 IMHz
32 ] +ggfi’;[;?1mﬁf | 32 || —— WISP5.1 16MHz
-5 —— = - —e— Opt-WISP IMHz

230 |~ 0pt-WISP 16MHz ‘ 230 | = opewisp vt e

528 ‘ Z8 ] P— |

) ] ) 1 | Opt- i

g2 ] 826 | avenw, - 17985 l Shider

£ . £ B Avg, =33.88s

5,4 _ | opt-wisp 5o, 1veom 17705 l AVg, gy, = 33.65's

z A [ Aven, =1521s WISPS.1 2 ] -

222 | Avgioum, = 1502 Avgy, =15.61s 222 i

220 AVg gy, = 1542 i £y i

> - > —

C18 | S8 - |
16— 5 16— ) |
14 — e

] 14— WISP5.1 ‘J
12— 12 = Avg g, =20.65s
AV, =20.34 s
(a) Reprogramming at 0.5 meters. (b) Reprogramming at 2 meters.

Fig. 12. Overall system delay measurement. The distance between RFID reader antenna and CRFID tag is
0.5 and 2 meters, respectively. Each experiment is repeated for 50 times.

respectively, while at 16 MHz the results are 15.02, 15.42 and 29.37 seconds. For the distance of
2 meters, the average time at 1 MHz are 17.98, 20.65 and 33,88 seconds while at 16 MHz the time
are 17.70, 20.34 and 33.65 seconds.

From the results, we observe that the overall time delay for Spider tag is roughly two times as
that for the other two tags at both interrogation ranges. This is because only 8 bits can be trans-
ferred to MCU through SPI interface and the length of image segment is one byte for chip-based
CRFID tags and two bytes for software-defined CRFID tags. As a result, the number of commands
sent by a reader for spider is approximately doubled as compared with the other two tags. For
WISP5.1 and Opt-WISP, they consume almost the same time because of their same instruction
encoding and decoding mechanism. When the tag is placed at a distance of 2 meters, the inade-
quate harvested power results to higher reprogramming error rates. Therefore, it takes more time
for the error detection and correction mechanism that is employed to correct the erroneously re-
programmed bits. More importantly, as the interrogation range increase, the overall round trip

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:19

| Unfilbed: Without Erasing == 1075 Ha(Defuabt) =0 1 Mz == 30 He =g 1 2MHz =<} 16MHz =1 Milz =167 MHz 3.33 Mz =9—4 MHz
Filled:  Wirh Erasing =B 1 OTM Dl =@ 1Mz =l 50z == 12M 2 533 Mz —P—6.67 Mz Ilﬁ MHz =16 MHz

A

Inset-B
R IE =" 59

Time (ms)
Time (ms)

i
o [ /

[ 100 200 300 at s 100 200 300 E £
Number of Bytes Number of Bytes

(a) Writing data on MSP430F2132. (b) Writing data on MSP430FR5969.

Fig. 13. Time consumption for writing data on MSP430F2132 and MSP430FR5969.

communication time increases because of the low communication success rates between RFID
reader and CRFID tag. Comparing the results of Opt-WISP, WISP5.1 and Spider tags, we find that
both the clock frequency and the type of memory have no serious effect on the overall system
delay.

5.3 Energy Overhead

5.3.1 Time Delay Measurements. To investigate the energy overhead incurred by the repro-
gramming operation, we first need to measure the time consumption incurred by writing data to
MCU. In this experiment, we study the time consumption of writing different bytes of data to the
MCUs used in CRFID tags. For MSP430F2132, the time is measured at 5 different clock frequen-
cies: default frequency (1.07 MHz), calibrated frequencies, which are 1, 8, 12, and 16 MHz under
two conditions. One is writing the FLASH memory directly without erasing, another is writing
the uninitialized FLASH memory after erasing. Such experiment design is to compare the time
consumption of initializing and reprogramming instruction with correction instruction. Due to
the nature of the FLASH memory cell, the state of each cell can be transformed from “1” to “0”
individually but to reprogram from “0” to “1” requires an erase cycle. Therefore, the MCU needs to
erase the FLASH segments before reprogramming. On the contrary, the correction instruction can
directly rewrite the memory cell without erasing because the reprogramming error only occurs
when the state is transiting from “1” to “0”. As shown in Figure 13(a), the unfilled markers repre-
sent the time consumption of writing the memory without erasing the FLASH segment, while the
filled markers show the time delay introduced by writing the memory after erasing the FLASH
segment. In addition, the shown results pertain to writing a single memory segment. We observe
a significant linear relationship between the time consumption and the number of bytes written
to the memory. In particular, the time difference between writing with and without erasing op-
eration is the distance between two parallel lines with the same color in Figure 13(a). Therefore,
the time consumption for erasing operation (corresponding difference) at five clock frequencies is
13.4,14.3, 1.82, 1.2 and 0.91 ms as annotated in the figure.

For MSP430FR5969, we evaluate our system on following clock frequencies: 1, 2.67, 3.33, 4, 5.33,
6.67, 8 and 16 MHz. However, the maximum write speed of FRAM on MSP430 devices is 8 MHz
and a “wait state” is required if the CPU clock exceeds the FRAM access speed requirements.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:20 D. Wu et al.

Andernd the : | ——
power harvester -

3342 Resistor

(a) Opt-WISP (b) WISP5.1

Fig. 14. Experimental setup for Opt-WISP, WISP5.1 and Spider.

The resultant speed depends upon factors like “cache hit ratio” and settings of NWAITSx register,
the discussion of which is beyond the scope of our research. For evaluation at 16 MHz, we use
the NWAITSx value of 01, [47, 48]. The experiment results are shown in Figure 13(b). Similar to
MSP430F2132, the time grows linearly as the number of bytes increases. However, when comparing
the results for two MCU at the same system frequency, we can find that the time consumption for
MSP430FR5969 is significantly lower than that for MSP430F2132.

5.3.2  Energy Overhead Measurements. To measure the energy overhead incurred by reprogram-
ming operation, we use the similar method that is used to measure the power consumption of
WISP4.1DL during encryption process [42]. We add a series resistor of 33 Q in the power path of
MCU in three CRFIDs and observe the voltage drop across the resistor. We find out that a value be-
tween 30-33 Q serves our purpose: a high resistor value adequately drops the voltage below 1.8V,
which is the minimum operating voltage for MCU, while a low resistance results in a voltage drop
in least microvolts, which is difficult to measure with high resolution. The evaluation is performed
for various clock frequencies. The insets in Figure 14 highlight the small modification to Spider tag
and WISP5.1, whereas we put an on-board resistor in Opt-WISP. The voltage before and after the
resistor (denoted as Vi, and V,,;) are measured using 8846A Digit Precision Multimeter, and the
time consumption (denoted as t) is measured using a 5 GS/s oscilloscope. The power consumption
is calculated by

(Vin - Vout) ) Vout t
R .

Energy = (1)

As the size of the firmware can scale and data is transferred through multiple Write commands
for all three platforms, we evaluate the time and energy overhead of writing a single image seg-
ment to the on-chip memory. The energy overhead for Opt-WISP, Spider and WISP5.1 is shown in
Table 2. We observe that despite the length of the image segment is 2 bytes for Opt-WISP and 1 byte
for Spider, the energy consumption for the two tags is nearly similar. This is because Opt-WISP
writes the on-chip memory in a word-wise fashion whereas Spider adopts the byte-wise writing,
and the time difference between these two writing operations is negligible. In addition, for Opt-
WISP and Spider the maximum energy overhead of writing an image segment without erasing
is less than one microjoule. For WISP5.1 and Opt-WISP, the former consumes approximately an
order of magnitude lower energy than latter. Among all three CRFID tags, the maximum time and
energy consumption is 14.4ms and 118.639u]J for Spider at IMHz, while the minimum values are
1.01us and 7.264n] for WISP5.1 at 16MHz. Moreover, we observe that the higher clock frequencies
will result in lower energy consumption and otherwise.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:21

Table 2. Time and Energy Measurements of Writing an Image Segment on Opt-WISP, WISP5.1, and Spider

Clock Vi Vout - Time - - Energy -
(MHz) W) W) w1th9ut w1t.h W1th9ut w1t.h
Erasing Erasing Erasing Erasing
Default | 3.346013 | 3.260247 113 ps 13.5ms | 957.481nJ | 114.389 ]
1 3.346012 | 3.263726 121 ps 144 ms | 984.716 nJ | 117.189 ]
Opt-WISP
(2 Bytes) 8 3.346022 | 3.220431 15.4 us 1.84 ms | 188.747 n] | 22.551 u]
12 3.346017 | 3.194128 10.1 pus 1.21 ms | 148.486 nJ | 17.789 uJ
16 3.346017 | 3.163778 | 7.68 us 0.92 ms | 134.182n] | 16.074 1]
Default | 3.163521 | 3.071369 113 ps 13.5ms | 969.173 nJ | 115.786 p]
Spider 1 3.163518 | 3.075104 121 ps 144 ms | 996.902 n] | 118.639 pJ
(1 Byte) 8 3.163524 | 3.026743 15.4 us 1.84 ms | 193.201 nJ | 23.084 uJ
12 3.163516 | 2.998503 10.1 ps 1.21 ms | 151.436 nJ | 18.142 uJ
16 3.163522 | 2.966066 | 7.68 s 0.92 ms | 136.301 nJ | 16.328 1]
1 2.216182 | 2.172403 12.8 s 36.889 nJ
2.67 | 2.216181 | 2.163687 4.88 s 16.796 nJ
3.33 | 2.216179 | 2.158987 3.76 us 14.069 nJ
WISP5.1 4 2.216183 | 2.155213 3.24 ps 12.901 nJ
(2 Bytes) 5.33 | 2.216181 | 2.147463 2.48 s 11.090 nJ
6.67 | 2.216174 | 2.131627 1.86 ps 10.158 nJ
8 2.216188 | 2.124673 1.62 ps 9.545n]
16 2.216185 | 2.103351 1.01 ps 7.264 n]

5.4 Success Rate

Since our scheme employs Write command to transmit the encoded instructions from RFID reader
to CRFID tag. In the final experiment, we evaluate the success rates for the Write command on
three platforms. The experiment setup is similar to Figure 11 as in case of overall system delay.
The distance between the reader and CRFID tag is increased from 0.2 to 4.0m during the course
of the experiment. Once the tag receives the Write command from the reader, it checks the CRC
of the received packet. If a correct CRC is received, then a Success will be replied to the reader,
otherwise, tag will ignore the command. Moreover, we compare our results with FirmSwitch [54],
which uses WISP4.1DL and switches between multiple pre-programmed firmwares through Write
command using the commercial RFID reader.

The evaluation results are shown in Figure 15. We observe that Spider tag has the best perfor-
mance, since it is analogous to commercial RFID tags as far as the execution of EPC protocol is
concerned, that is, whole EPC protocol is implemented in the embedded chip. Compared with Spi-
der, the success rates for WISP5.1 and Opt-WISP are lower because the EPC protocol is realized in
the MCU and the harvest power might not enough for the energy consuming computations when
the interrogation range increases. In addition, we observe that Opt-WISP, WISP5.1, and Spider
CRFIDs show better performance than FirmSwitch. There is a sharp decline in the success rate of
FirmSwitch after 0.5 meters because WISP4.1DL backscatters sensor data as well as pre-calculates
the CRC, which consumes a large amount of energy. As Opt-WISP makes use of an additional
antenna-harvester pair exclusive for sensing/computational tasks, the interrogation range is in-
creased and observed success rate is higher. In the case of WISP5.1, it uses an optimized and more
sensitive power harvester that increases both the range as well as the success rate.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



9:22 D. Wu et al.

1.0 —

osl X A
sl \\ \\\“\ L\‘\\A
N e

/

—&— WISP5.1 Ny
—&— Opt-WISP
0.2 |- |—A— Spider
—*— FirmSwitch

ool — 1 . 1 . - - - - -
00 05 10 15 20 25 30 35 40

Distance (m)

Success Rate

y

Fig. 15. Success rates at different interrogation ranges.

6 CONCLUSION

In this article, we present the R® scheme, which can reliably perform an OTA reprogramming
operation. The scheme is fully compatible with EPC protocol and does not require any hardware
modifications to either CRFID tags or RFID reader. To this end, the system architecture is explained
with an in-depth discussion for two topologies of CRFIDs, including three tags and two kinds of
MCUs. Moreover, we alleviate the power failure though leveraging the transition between active
mode and low-power mode. In particular, we investigate the underlying reasons for reprogram-
ming errors and propose a simple yet efficient mechanism based on the concept of Bitmap for error
detection and correction. We implement our scheme on two topologies of CRFIDs including three
tags and two kinds of MCUs. Finally, we evaluate our scheme from three aspects: overall system
delay in reprogramming firmware image, time and energy overhead for reprogramming opera-
tion, and success rate at different the reader’s interrogation range. Experimental results show that
the average overall system delay amounts to 29.83, 15.21, and 15.61s at 0.5m for Spider tag, Opt-
WISP, and WISP5.1 CRFID tags when reprogramming 512 bytes at IMHz. The energy consumption
of writing a single image segment at 16MHz is 134.2, 136.3, and 7.2n] for Opt-WISP, Spider, and
WISP5.1, respectively. A success rate of 93%, 89.5%, and 84% is achieved for Write command with
an interrogation range of 1m.

REFERENCES

[1] ARMmbed. 2015. Firmware over the air FOTA updates. (March 2015). Retrieved March 21, 2017. Retrieved from
https://developer.mbed.org/teams/Bluetooth-Low-Energy/wiki/Firmware-Over-the- Air-FOTA-Updates.

[2] C. Bauer-Reich, Kay Chen Tan, F. Haring, N. Schneck, A. Wick, L. Berge, Jesse Hoey, Rudolf Sailer, and C. Ulven.
2014. An investigation of the viability of UHF RFID for subsurface soil sensors. In Proceedings of the IEEE International
Conference on Electro/Information Technology (EIT 14). IEEE, 577-580.

[3] Michael Buettner, Benjamin Greenstein, and David Wetherall. 2011. Dewdrop: An energy-aware runtime for com-
putational RFID. In Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation
(NSDI'11).

[4] Michael Buettner, Richa Prasad, Matthai Philipose, and David Wetherall. 2009. Recognizing daily activities with RFID-
based sensors. In Proceedings of the 11th International Conference on Ubiquitous Computing. ACM, 51-60.

[5] Michael Buettner and David Wetherall. 2011. A software radio-based UHF RFID reader for PHY/MAC experimenta-
tion. In Proceedings of the IEEE International Conference on RFID (RFID’11). IEEE, 134-141.

[6] Rohit Chaudhri, Jonathan Lester, and Gaetano Borriello. 2008. An RFID based system for monitoring free weight
exercises. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. ACM, 431-432.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.


https://developer.mbed.org/teams/Bluetooth-Low-Energy/wiki/Firmware-Over-the-Air-FOTA-Updates

(13

=

(14

=

(15

=

(16]

(17

—

(18

=

[19

—

[20

=

[21

—

[22

—

[23

=

[24

flan)

[25

=

(26

=

[27

—

[28

=

[29]

(30]

(31]

: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:23

Adam Chlipala, Jonathan Hui, and Gilman Tolle. 2004. Deluge: Data dissemination for network reprogramming at
scale. University of California, Berkeley, Technical Report (2004).

Crossbow Technology, Inc. 2003. Mote In-network programming user reference (Jan. 2003).

Artem Dementyev and Joshua R. Smith. 2013. A wearable UHF RFID-based EEG system. In Proceedings of the IEEE
International Conference onRadio Frequency Identificaion (RFID’13). IEEE, 1-7.

Robert F. Dickerson, Eugenia I. Gorlin, and John A. Stankovic. 2011. Empath: A continuous remote emotional health
monitoring system for depressive illness. In Proceedings of the 2nd Conference on Wireless Health. ACM, 5.

Wan Du, Zhenjiang Li, Jansen Christian Liando, and Mo Li. 2016. From rateless to distanceless: Enabling sparse sensor
network deployment in large areas. IEEE/ACM Transactions on Networking 24, 4 (2016), 2498-2511.

Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. 2015. When pipelines meet fountain: Fast data dis-
semination in wireless sensor networks. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. ACM, 365-378.

EPCglobal. 2015. EPC Radio-Frequency Identity Protocols, Generation-2 UHF RFID, Specification for RFID Air Inter-
face Protocol for Communications at 860MHz-960MHz, Version 2.0.1 Ratified. (April 2015). Retrieved May 29, 2016
from http://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf.

Farsens. 2015. ANDY100 evaluation board with integrated start-up circuit. (Sept. 2015). Retrieved May 29, 2016 from
http://www.farsens.com/media/document/26/ds-spider-h254-v01.pdf.

Federico Gasco, Paolo Feraboli, Jeff Braun, Joshua Smith, Patrick Stickler, and Luciano DeOto. 2011. Wireless strain
measurement for structural testing and health monitoring of carbon fiber composites. Comp. Part A: Appl. Sci. Man-
ufactur. 42, 9 (2011), 1263-1274.

Wei Gong, Kebin Liu, Xin Miao, and Haoxiang Liu. 2014. Arbitrarily accurate approximation scheme for large-scale
RFID cardinality estimation. In Proceedings of IEEE INFOCOM. IEEE, 477-485.

Jeremy Gummeson, Shane S. Clark, Kevin Fu, and Deepak Ganesan. 2010. On the limits of effective hybrid micro-
energy harvesting on mobile CRFID sensors. In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services. ACM, 195-208.

Jeremy Gummeson, Pengyu Zhang, and Deepak Ganesan. 2012. Flit: A bulk transmission protocol for RFID-scale
sensors. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. ACM, 71-84.
Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark, Benessa Defend, Will Morgan,
Kevin Fu, Tadayoshi Kohno, and William H. Maisel. 2008. Pacemakers and implantable cardiac defibrillators: Software
radio attacks and zero-power defenses. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’08). IEEE,
129-142.

Shibo He, Jiming Chen, Fachang Jiang, David K. Y. Yau, Guoliang Xing, and Youxian Sun. 2013. Energy provisioning
in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 12, 10 (2013), 1931-1942.

Enamul Hoque, Robert F. Dickerson, and John A. Stankovic. 2010. Monitoring body positions and movements during
sleep using WISPs. In Proceedings of the 2010 Conference on Wireless Health. ACM, 44-53.

Impinj. 2015. Octane SDK. (Oct. 2015). Retrieved May 29, 2016 from https://support.impinj.com/hc/en-us/articles/
202755268-Octane-SDK.

Shan Jiang and Stavros V. Georgakopoulos. 2011. Optimum wireless power transmission through reinforced concrete
structure. In Proceedings of the IEEE International Conference on Radio Frequency Identification (RFID’11). IEEE, 50-56.
Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, and David Wetherall. 2015. Wi-Fi backscatter:
Internet connectivity for RF-powered devices. ACM SIGCOMM Comput. Commun. Rev. 44, 4 (2015), 607-618.
Libelium. 2016. Over the Air Programming (OTAP). (Jan. 2016). Retrieved May 29, 2016 from http://www.libelium.
com/products/waspmote/ota/.

Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall, and Joshua R. Smith. 2013. Ambient
backscatter: Wireless communication out of thin air. ACM SIGCOMM Comput. Commun. Rev. 43, 4 (2013), 39-50.
Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and execution model for intermittent
systems. In ACM SIGPLAN Notices, Vol. 50. ACM, 575-585.

Pedro José Marrén, Andreas Lachenmann, Daniel Minder, Matthias Gauger, Olga Saukh, and Kurt Rothermel. 2005.
Management and configuration issues for sensor networks. Int. J. Network Manage. 15, 4 (2005), 235-253.

Saman Naderiparizi, Aaron N. Parks, Zerina Kapetanovic, Benjamin Ransford, and Joshua R. Smith. 2015. Wispcam:
A battery-free RFID camera. In Proceedings of the IEEE International Conference on Radio Frequency Identification
(RFID’15). IEEE, 166-173.

Brian Otis and Dan Yeager. 2009. SoOCWISP: Ultra-low power wireless sensing RFID chip. In Proceedings of the WISP
Summit Workshop.

Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and Joshua R. Smith. 2014. Turbocharging ambient backscatter
communication. In ACM SIGCOMM Comput. Commun. Rev. Vol. 44. ACM, 619-630.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.


http://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
http://www.farsens.com/media/document/26/ds-spider-h254-v01.pdf
https://support.impinj.com/hc/en-us/articles/202755268-Octane-SDK
http://www.libelium.com/products/waspmote/ota/

9:24

(32]
(33]
(34]
(35]
(36]
[37]
(38]
[39]

[40]

[41]
[42]
(43]
[44]
(45]
[46]
(47]
(48]

[49]

[50]

[51]
(52]

(53]

[54]

[55]

[56]

D. Wu et al.

Aaron N. Parks and Joshua R. Smith. 2014. Sifting through the airwaves: Efficient and scalable multiband RF harvest-
ing. In Proceedings of the IEEE International Conference on Radio Frequency Identification (RFID’14). IEEE, 74-81.
Matthai Philipose, Joshua R. Smith, Bing Jiang, Alexander Mamishev, Sumit Roy, and Kishore Sundara-Rajan. 2005.
Battery-free wireless identification and sensing. IEEE Pervas. Comput. 4, 1 (2005), 37-45.

Lane A. Phillips. 2005. Aqueduct: Robust and Efficient Code Propagation in Heterogeneous Wireless Sensor Networks.
Ph.D. Dissertation. University of Colorado.

Benjamin Ransford. 2010. A rudimentary bootloader for computational RFIDs. UMass Amherst, Technical Report UM-
(€S-2010-061 (2010).

Benjamin Ransford, Shane S. Clark, Mastooreh Salajegheh, and Kevin Fu. 2008. Getting things done on computational
RFIDs with energy-aware checkpointing and voltage-aware scheduling. HotPower 8 (2008), 5-5.

Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2012. Mementos: System support for long-running computation on
RFID-scale devices. ACM SIGPLAN Notices 47, 4 (2012), 159-170.

Niels Reijers and Koen Langendoen. 2003. Efficient code distribution in wireless sensor networks. In Proceedings of
the 2nd ACM International Conference on Wireless Sensor Networks and Applications. ACM, 60-67.

Matt Reynolds and Stewart Thomas. 2009. The blue devil WISP: Expanding the frontiers of the passive RFID physical
layer. In Proceedings of the WISP Summit Workshop.

Mastooreh Salajegheh, Yue Wang, Anxiao Andrew Jiang, Erik Learned-Miller, and Kevin Fu. 2013. Half-wits: Software
techniques for low-voltage probabilistic storage on microcontrollers with NOR flash memory. ACM Trans. Embed.
Comput. Syst. (TECS) 12, 2s (2013), 91.

Yuanchao Shu, Yu Jason Gu, and Jiming Chen. 2014. Dynamic authentication with sensory information for the access
control systems. IEEE Trans. Parallel Distrib. Syst. 25, 2 (2014), 427-436.

Joshua R. Smith. 2013. Wirelessly Powered Sensor Networks and Computational RFID. Springer Science & Business
Media.

Thanos Stathopoulos, John Heidemann, and Deborah Estrin. 2003. A Remote Code Update Mechanism for Wireless
Sensor Networks. Technical Report. DTIC Document.

Jethro Tan. 2015. Robust Downstream Communication and Storage for Computational RFIDs. Ph.D. Dissertation. De-
partment of Software Technology, Delft University of Technology.

Texas Instruments. 2012. Mixed Signal Microcontroller. (Jan. 2012). Retrieved May 29, 2016 from http://www.ti.com/
lit/ds/symlink/msp430f2132.pdf.

Texas Instruments. 2013. MSP430x2xx Family User’s Guide. (July 2013). Retrieved May 29, 2016 from http://www.ti.
com/lit/ug/slaul44j/slau144;j.pdf.

Texas Instruments. 2015. MSP430FR59xx Mixed-Signal Microcontrollers. (March 2015). Retrieved May 29, 2016 from
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf.

Texas Instruments. 2016. MSP430FR58xx, MSP430FR59xx,MSP430FR68xx, and MSP430FR69xx Family User’s Guide.
(May 2016). Retrieved May 29, 2016 from http://www.ti.com/lit/ug/slau367j/slau367j.pdf.

Arnaud Vena, Brice Sorli, Alain Foucaran, and Yassin Belaizi. 2014. A RFID-enabled sensor platform for pervasive
monitoring. In Proceedings of the 9th International Symposium on Reconfigurable and Communication-Centric Systems-
on-Chip (ReCoSoC’14). IEEE, 1-4.

Jue Wang, Haitham Hassanieh, Dina Katabi, and Piotr Indyk. 2012. Efficient and reliable low-power backscatter net-
works. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication. ACM, 61-72.

Jennifer Wang, Erik Schluntz, Brian Otis, and Travis Deyle. 2015. A new vision for smart objects and the internet of
things: Mobile robots and long-range UHF RFID sensor tags. arXiv:1507.02373 (2015).

Die Wu, Muhammad Jawad Hussain, Songfan Li, and Li Lu. 2016. R2: Over-the-air reprogramming on computational
RFIDs. In Proceedings of the IEEE International Conference on Radio Frequency Identification (RFID’16). IEEE, 1-8.
Zhibin Xiao, Xi Tan, Xianliang Chen, Sizheng Chen, Zijian Zhang, Hualei Zhang, Junyu Wang, Yue Huang, Peng
Zhang, Lirong Zheng, and Hao Min. 2015. An implantable RFID sensor tag toward continuous glucose monitoring.
IEEE 3. Biomed. Health Info. 19, 3 (2015), 910-919.

Wenyu Yang, Die Wu, Muhammad Jawad Hussain, and Li Lu. 2015. Wireless firmware execution control in compu-
tational RFID systems. In Proceedings of the IEEE International Conference on Radio Frequency Identification (RFID’15).
IEEE, 129-136.

Daniel Yeager, Fan Zhang, Azin Zarrasvand, Nicole T. George, Thomas Daniel, and Brian P. Otis. 2010. A 9 uA,
addressable gen2 sensor tag for biosignal acquisition. IEEE §. Solid-State Circ. 45, 10 (2010), 2198-2209.

Ibon Zalbide, Eduardo D’Entremont, Ainara Jimenez, Hector Solar, Andoni Beriain, and Roc Berenguer. 2014. Battery-
free wireless sensors for industrial applications based on UHF RFID technology. In Proceedings of the IEEE 2014 Con-
ference on Sensors. IEEE, 1499-1502.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.


http://www.ti.com/lit/ds/symlink/msp430f2132.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ug/slau367j/slau367j.pdf

R3: Reliable Over-the-Air Reprogramming on Computational RFIDs 9:25

[57] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo: A batteryless computational RFID
and sensing platform. Department of Computer Science, University of Massachusetts Amherst, Technical Report
(2011).

[58] Pengyu Zhang and Deepak Ganesan. 2014. Enabling bit-by-bit backscatter communication in severe energy harvest-
ing environments. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’14). 345-357.

[59] Pengyu Zhang, Jeremy Gummeson, and Deepak Ganesan. 2012. Blink: A high throughput link layer for backscatter

communication. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. ACM,

99-112.

Yuanqing Zheng and Mo Li. 2013. ZOE: Fast cardinality estimation for large-scale RFID systems. In Proceedings of the

2013 IEEE INFOCOM. IEEE, 908-916.

[61] Yuanqing Zheng and Mo Li. 2014. Towards more efficient cardinality estimation for large-scale RFID systems.
IEEE/ACM Trans. Network. 22, 6 (2014), 1886—-1896.

[62] Yuanqing Zheng and Mo Li. 2016. Read bulk data from computational RFIDs. IEEE/ACM Trans. Network. 24, 5 (2016),
3098-3108.

(60

=

Received June 2016; revised December 2016; accepted March 2017

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 9. Publication date: September 2017.



