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|Iso-Map: Energy-Efficient Contour Mapping
in Wireless Sensor Networks

Mo Li, Member, IEEE, and Yunhao Liu, Senior Member, IEEE

Abstract—Contour mapping is a crucial part of many wireless sensor network applications. Many efforts have been made to avoid
collecting data from all the sensors in the network and producing maps at the sink, which is proven to be inefficient. The existing
approaches (often aggregation based), however, suffer from heavy transmission traffic and incur large computational overheads on
each sensor node. We propose Iso-Map, an energy-efficient protocol for contour mapping, which builds contour maps based solely on
the reports collected from intelligently selected “isoline nodes” in wireless sensor networks. Iso-Map achieves high-quality contour
mapping while significantly reducing the generated traffic from O(n) to O(\/n), where n is the total number of sensor nodes in the field.
The pernode computation overhead is also restrained as a constant. We conduct comprehensive trace-driven simulations to verify this
protocol, and demonstrate that Iso-Map outperforms the previous approaches in the sense that it produces contour maps of high

fidelity with significantly reduced energy cost.

Index Terms—Distributed applications, query processing, terrain mapping, wireless sensor networks.

1 INTRODUCTION

RECENT advances in wireless communication and micro
system techniques have resulted in significant devel-
opments of wireless sensor networks (WSNs). A sensor
network consists of a large number of low-power, cost-
effective sensor nodes that interact with the physical world
[5], [7], [10]. The increasing studies of wireless sensor
networks aim to enable computers to better serve people by
using instrumented sensors to automatically monitor the
physical environment.

Contour mapping has been widely recognized as a
comprehensive method to visualize sensor fields [8], [11],
[14]. A contour map of an attribute (e.g., height) shows a
topographic map that displays the layered distribution of
the attribute value over the field. It often consists of a set of
contour regions outlined by isolines of different isolevels.
Fig. 1 plots a section of underwater depth measurement and
the corresponding isobath contour map.

For many applications, contour mapping provides back-
ground information for the sink to detect and analyze
environmental happenings in a global view of the features
in the field. Such a view is often difficult to achieve by
individual sensor nodes with constrained resources and
insufficient knowledge.

A naive approach for contour mapping is to collect
sensory data from all the sensors in the monitored field and
then construct the contour map at the sink. Obviously,
delivering a huge amount of data back to the sink incurs
heavy traffic, which rapidly depletes the energy of sensor
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nodes. To address this problem, several aggregation based
protocols have been proposed [15], [27], [28]. These
protocols aggregate data with similar readings at inter-
mediate nodes, reducing the traffic overhead up to
40 percent [27]. We believe the aggregation based protocols
cannot further improve the scalability of the network based
on the following observations. First, as long as all sensors
are required to report to the sink, the number of generated
reports is always O(n), where n is the total number of sensor
nodes. Second, the aggregation operations insert a heavy
computation overhead to the intermediate nodes. For
example, INLR [27] requires each intermediate node to
carry out multiple integrals in order to estimate the
similarity of two contour regions.

In order to address the inherent limitations of aggrega-
tion based approaches, we propose Iso-Map. By intelli-
gently selecting a small portion of the nodes to generate and
report data, Iso-Map is able to construct contour maps with
comparable accuracy while significantly reducing network
traffic and computation overhead. Although the basic idea
beyond Iso-Map is comprehensible, several challenges exist
in its design. For example, partial utilization of the network
information reduces the network traffic, but naturally leads
to the degradation of the mapping fidelity. Thus, careful
node selection policies and an effective algorithm to recover
the contour map from the partial information are necessary.
We also need to balance the trade off between the traffic
savings and the mapping fidelity. In addition, we aim to
avoid heavy computational overhead in the intermediate
nodes so that the design is scalable for resource constrained
sensor devices.

The major contributions of this work are as follows: 1) We
design a novel algorithm to construct contour maps from a
critical set of nodes, which we call isoline nodes. By
restraining the traffic generation within the isoline nodes,
Iso-Map significantly reduces the network traffic while still
constructing high-quality contour maps that are comparable
to the best ones ever achieved through existing protocols.

Published by the IEEE Computer Society
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Fig. 1. Contour mapping. (a) A section of underwater depth measure-
ment and (b) the isobath contour map of (a).

Our analysis proves that, Iso-Map reduces the traffic
generation from O(n) of existing protocols to O(y/n), which
substantially suppresses the traffic flows across the network.
2) By employing local measurement and lightweight in-
network filtering, the pernode computational overhead is
constrained as a constant and does not grow with the
network size. 3) We conduct a field study on a practical Iso-
Map application, and based on the collected real world data,
we conducted a trace-driven simulation which confirms the
superior performance of Iso-Map compared with existing
protocols. Another strength of this design is that Iso-Map is
orthogonal with many other designs, enabling further traffic
savings to be achieved together with other approaches.

The remainder of this paper is organized as follows:
Section 2 introduces our investigation of a practical Iso-Map
application. Section 3 presents the Iso-Map design, illustrat-
ing the flow of its operations. In Section 4, we mathema-
tically analyze the communicational and computational
overhead of Iso-Map and compare with that of previous
protocols. We present simulation results and evaluate the
performance of Iso-Map in comparison with other protocols
in Section 5. In Section 6, we discuss the related work and
we conclude this work in Section 7.

2 APPLICATION SCENARIO

We conducted a field study on Huanghua Harbor, which is
currently the second largest harbor of coal transportation in
China. It has experienced rapid development over the past
five years, and its coal transporting capability has increased
from 1.6 million tons per year in 2002 to 6.7 million tons per
year in 2006. However, Huanghua Harbor currently suffers
from the increasingly severe problem of the silted sea route.
As illustrated in Fig. 2, Huanghua Harbor has a sea route
that is 19 nautical miles long and 800 m wide at the
entrance, including an inner route and an outer route. The
sea route is designed to have a water depth of 13.5 m to
allow for the passage of ships that weigh over 50 thousand
tons. Since the sea route has been in operation, it has always
been threatened by the movement of silt from the short sea
area within 14 nautical miles outside the route entrance. In
the event that the sea route is silted up, ships of large
tonnages must wait to prevent grounding, and ships of
small tonnages need be piloted into the harbor. Monitoring
the extent of siltation reliably is critical in order to ensure
the safe operation of Huanghua Harbor.

The uncertainty and the high instantaneous intensity of
the siltation make monitoring the extent of siltation
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Fig. 2. The monitoring field of Huanghua Harbor.

extremely expensive and difficult. The amount of siltation
in Huanghua Harbor is affected by many factors, among
which tide and wind blow are the most dominating. While
the tide produces a periodical influence on the movement
of silt, the sudden blowing of wind brings more incidental
and intensive influences. For example, records show that
strong winds with wind forces of 9 to 10 on the Beaufort
scale hit Huanghua Harbor from 10th Oct. to 13th Oct. in
2003. The stormy tide brought a siltation of 970,000 m?® to
the sea route, which suddenly decreased the water depth
from 9.5 m to 5.7 m and blocked most of the ships weighing
more than 35 thousand tons. The harbor administration
hired three boats equipped with active sonars to cruise the
380 km? short sea area around the harbor for several days,
creating underwater contour maps for ships to find possible
pathways and to set future cleaning plans. According to the
record, drawing the underwater contour maps cost more
than 18 million US dollars per year. Even so, the monitoring
granularity is low in terms of time and space, especially
under stormy weather conditions, which creates intensive
siltation and prevents boats from routine cruising.

We propose to deploy an echolocation sensor network on
the sea surface to continuously monitor the water depth of
the sea route. The sensor nodes can be deployed with buoys
and tied with ropes to the bottom of the sea (as illustrated in
Fig. 3). The precise depth measurement at each spot is not
needed. Instead, Iso-Map can be utilized to build an isobath
contour map to visualize the depth level of the sea area. The
contour map depicts the contour sea zones above different
depth levels. Based on this contour map, we can easily
guide ships of different tonnages. With the map, we can
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Fig. 3. The sensor node deployed on the sea surface.
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Fig. 4. Contour mapping from isoline nodes. (a) Dense deployment of
sensor nodes leads to the isolines. (b) Sparse deployment of sensor
nodes provides ambiguous information. (c), (d) and (e) Three possible
contour maps of (b).

also clearly locate the dangerous areas where the water
depth is under alarm thresholds. The method of contour
mapping by the sensor network significantly eases the task
of siltation monitoring and reduces the expenses. Using less
than 1 million US dollars, we can afford to deploy more
than 40,000 sensor nodes over the 380 km? sea area, with a
density of one sensor node per 100 m x 100 m. We are
currently launching this project, and all data used in the
simulations are from the real world records.

3 Iso-MaApP DESIGN

The basic idea of Iso-Map is to create the contour map based
on a selected set of nodes, known as the isoline nodes. Isoline
nodes are the sensor nodes residing on the isolines around
contour regions. A more formal definition of isoline node
will be given later. Intuitively, since isoline nodes corre-
spond to the perimeter of contour regions, the number of
reports from isoline nodes can be largely restricted
compared with the network size. Later, we mathematically
show that the traffic generated from isoline nodes is at the
level of O(y/n), where n is the total number of nodes in the
monitored field.

It is not, however, trivial to construct the contour map
based solely on isoline nodes’ reports. Ideally, as illustrated
in Fig. 4a, when sensor nodes are densely deployed, the
positions of isoline nodes clearly outline the contour regions.
In more practical scenarios, however, sensor nodes are
usually deployed sparsely, as shown in Fig. 4b, in which the
positions of isoline nodes provide only discrete “isoposi-
tions.” We cannot deduce how the isolines pass through
these positions. For example, based on the data illustrated in
Fig. 4b, the sink can interpret into different contour maps,
such as the ones shown in Figs. 4c, 4d, and 4e.

In this section, we will first introduce the major operations
of Iso-Map including building network architecture, query
dissemination and isoline node appointment, isoline node
measurement, and contour map generation, and then
discuss the in-network filtering for further traffic reductions.

3.1 Building Network Architecture

Iso-Map first builds the routing structure in the sensor
network, through which the sink insert queries into the
network and collects reports. Although we do not rely on
any particular underlying network architecture, for this
work, we assume a tree-based routing scheme [13] that is
adopted in many systems [8]. We believe that assuming a
concrete underlying networking strategy helps us clearly
state the idea, providing a fair platform for the comparison
of performance between different approaches. In the tree-
based routing scheme, a spanning tree rooted at the sink is
constructed over the communication graph. Each node is
assigned a level, which specifies its hop count distance
from the sink. The parent node is one level lower than its
children nodes. Nodes in different levels forward packets
during different time slots. Topology maintenance mechan-
isms can be employed [13], which allow each node to
dynamically choose a parent from its neighboring nodes
based on the quality of communication. MAC layer
reliability of node transmissions can be easily added into
this framework [18], [20].

3.2 Query Dissemination and Isoline Node
Appointment

Initially, the sink disseminates a query through the
routing tree for contour mapping over the targeted field.
The query message specifies the data space [v,vy] and
the granularity 7" of the contour map, which specifies the
desired isolines in the contour map with the isolevels
v; =v +14.T € [v,vy]. Upon receiving this query, each
sensor node accordingly determines whether it is an
isoline node.

Definition 3.1. A sensor node p (with sensing value v,) is an
isoline node if and only if: 1) its sensing value is within a
predefined border region of the isolevel v; specified in the query,
i.e., [v; —e,v; + €], and 2) one of its neighboring nodes q has a
sensing value v,, where v; is between their sensing values, i.e.,
vy < Vi < vg,0r Vg < v; < vy The satisfying node has the
isolevel of v;.

Based on Definition 3.1, a node only incurs local
operations within its neighborhood. It first appoints itself
as a candidate isoline node if its sensing value falls into the
border region of the query. Then, the candidate isoline node
checks its local neighborhood and identifies itself as an
isoline node if the second condition is satisfied. The two
conditions guarantee that the isoline node is close to the
isoline in terms of value and space. Apparently, a larger
tolerance on the border region of the sensing value specified
by e will broaden our selection of isoline nodes, yet lead to
unexpected errors on the mapped isolines. Normally, ¢ is
selected as a fraction of the isoline granularity 7. In our later
analysis and experiments, ¢ is selected as 0.05- 7. Never-
theless, we leave such a parameter adjustable by concrete
applications.

3.3 Isoline Node Measurement

Once the isoline nodes are appointed, they make local
measurements and generate reports to send back to the
sink. Each isoline node generates a 3-tuple report
r = <v,p,d>, in which v represents the isolevel of the
node, p represents the position of the sensor node, and d
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represents the gradient direction of the attribute value at
the sensor node. Clearly, the isolevel v can be obtained
when the node determines that it is an isoline node, and
the position p can be obtained either from attached
localization devices such as a GPS receiver or by one of
existing algorithms [6], [16], [25]. However, as illustrated
in Fig. 4, having only p and v is often not sufficient for the
sink to construct the contour map. To address this
problem, we introduce the new parameter gradient
direction d.

Each isoline node performs local modeling on sensing
values within its neighborhood and obtains an estimation of
the gradient direction d. The spatial data value distribution
is mapped into the (x, y, ) space, where the coordinate (z, y)
represents the position and v = f(x,y) describes the dis-
tribution surface of the data value in this space. The gradient
direction d denotes the direction where the data value most
degrades in the space. The vector d is calculated by:

T
of o f) . ()

d=—grad(f) =-Vf= 7<%’87y

To estimate the gradient direction d, an isoline node first
needs to approximate the local data map. To build the local
data map in this design, each isoline node sends queries to
its neighboring sensor nodes for their positions and sensory
values. The query scope can be adjusted within k-hop
neighbors for different sensor deployment densities or to
achieve different levels of estimation precision. Upon
receiving the <v,p> tuples from neighboring nodes, the
isoline node approximates the local data map through
regression analysis. Indeed, many regression models can be
employed to construct the approximated data value surface
on the local data map, among which linear regression is a
simple and widely used one. The computational simplicity
of the linear regression model makes it a natural choice for
the resource constrained sensor devices.

Fig. 5 illustrates the rationale of how the isoline node
performs the linear regression and approximates the data
value surface with the regression plane. Without loss of
generality, we assume the isoline node position is py(zg, yo)
and the sensory value is 1. The positions of its n neighboring
sensors are p1(x1,y1),pa(T2,42)s .-, Pn(Tn, yn) and the sen-
sory values are vy, vy, . .., 1y, Tespectively.

A linear model v = L(z,y) = ¢y + c1z + coy describes
the regression plane of the n+ 1 points in the data value
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Fig. 6. The example of calculated gradient directions of three isoline
nodes.

space built on (z,y,v). With the n+1 points (x¢, o, 1),
(z1,91,1), -+, (Tn, Yn, V), the isoline node computes the
coefficients of the linear model by solving the equation:

Aw = b, (2)
where
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With the obtained plane of linear model approximation
v = L(z,y), the isoline node can calculate its gradient by
introducing this approximation into (1):

OL oL\T
dy =55
ox’ Oy

Fig. 6 plots an example where the isoline nodes are at the
isolevel of 40. Each isoline node calculates the gradient
direction from the regression within its neighborhood. We
mark the calculated gradient directions in the figure. The
calculated gradient direction of each isoline node reflects the
local trend of data spatial variation and it well approximates
the normal direction of the isoline passing by. Fig. 7 shows
the statistics on the error between the calculated gradient
direction and the normal direction of isolines. As the
average node degree increases, the error drops rapidly.

Po = —(617 CZ)T- (3)
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Fig. 7. The error between calculated gradient direction and the normal
direction of isolines.

Note that generally, for a random deployment of sensors, a
connected WSN results in an average node degree at least
above 7 [1]. As shown in Fig. 7, this suppresses the error to
within +5°. Later, the sink will utilize this parameter to
measure the local features of isolines.

3.4 Contour Map Generation

Upon receiving isoline node reports, the sink constructs the
contour map which is delineated by isolines of different
isolevels, say v; = v, +i-T € [v1, vg]. The sink separately
constructs isolines of different isolevels, and the contour
regions reside between them.

When constructing isolines of the isolevel v;, the sink
utilizes the reports with isolevel v; from the isoline nodes
residing along the isolines of v;. Since the data gradient
direction d at each reported position approximates the
normal direction of isolines, it helps to construct local
segments of isolines. Fig. 8a shows that isoline nodes of the
same isolevel report to the sink and Fig. 8b depicts the
reported isopositions and corresponding gradient direc-
tions. The sink first builds a Voronoi diagram for the set of

isopositions, as shown in Fig. 8c. The Voronoi cell specifies
the affecting area of each isoposition, where the sink
constructs the local isoline segment according to the
gradient direction d at that isoposition. For each cell, a
straight line passing the isoposition and perpendicular to its
gradient direction d is drawn. It intersects with cell borders
and partitions the cell into two parts. The part in the
gradient direction is the outer part and the opposite one is
the inner part. The separating line acts as a local boundary
in each Voronoi cell, which we call the type-1 boundary.
The sink then merges the inner parts in different Voronoi
cells and complements the boundaries to separate contour
regions from outer area. The complementary boundaries
along the cell borders are called type-2 boundaries. Fig. 8d
illustrates this step. As shown, after this step, well-
approximated contour regions are outlined by the con-
catenated local boundaries, though it appears a bit rough.

The sink then regulates the approximation by smoothing
the pinnacles based on the following two rules. Rule 1. The
type-1 boundary is prolonged at the end where it intersects
with a type-2 boundary and their internal angle is within
(180 degree, 270 degree). If it intersects with the type-1
boundary in the adjacent Voronoi cell, the pinnacle area
outside of it should be removed and accepted as the new
boundary. Otherwise, no change is made. Rule 2. The type-1
boundary is prolonged at the end where it intersects with a
type-2boundary and their internal angle is within (90 degree,
180 degree). If it intersects with the type-1 boundary in the
adjacent Voronoi cell, the concave area inside of it should be
included and accepted as the new boundary. Otherwise, no
change is made. Fig. 8e illustrates how the two rules are
applied to regulate the approximation. The regulation
process under the two rules substantially achieves better
readjustments on the affecting area of each isoposition and
makes a tighter approximation. The approximated isolines
that are eventually obtained are shown in Fig. 8f.
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Fig. 8. lllustration of the process of contour boundary deduction.
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When building the isolines of different isolevels, the sink
initially builds isolines of the lowest isolevel, and the
isolines of isolevel v, restrict the boundaries for all contour
regions above the isolevel v;. When the contour regions of
higher isolevels intersect with such a boundary, only the
area inside the boundary is kept. Based on this recursive
rule, Isolines are then sequentially constructed according to
their isolevels.

3.5 In-Network Filtering

Until now, we have seen that Iso-Map constructs contour
mapping with reduced message reporting. Now, we show
how to further make trade off between traffic overhead and
mapping precision.

We note that the precision of the contour mapping is
related to the density of isoline node reports. As we
previously mentioned, Iso-Map provides contour mapping
with acceptable fidelity even when sensor nodes are
sparsely deployed. When the network has a high density
and we do not have special requirements on the mapping
precision, it is not necessary to deliver all isoline node
reports at a cost of heightened traffic overhead. Iso-Map
employs in-network filtering in the routing process to
control the report density and aims to achieve an optimum.

A parameterized method is used in the in-network
filtering process. When the intermediate node receives the
reports from its descendant nodes, it investigates the
relationship between reports of different isoline nodes.
Two parameters, angular separation (s,) and distance separation
(sq) are utilized to evaluate the relationship between two
different reports, where s, describes the angular separation
between the gradient d in the two reports and s, describes the
distance separation between the positions of the two reports.
The intermediate node calculates the two parameters for
each pair. If both s, and s, are smaller than the predeter-
mined threshold values, one of the reports is considered
redundant and dropped. Thus, the predefined threshold
values act as a filter to control the report density. More
tolerant thresholds lead to smaller traffic cost but result in a
lower fidelity of the approximations. Such a filtering process
is recursively applied to all the generated reports along the
paths where they are forwarded to the sink. Intermediate
nodes store and compare the filtered isoline reports from
their descendant nodes. In Section 5, our simulation gives an
analysis on the setting of the two parameters.

By introducing the evaluation of angular separation s,,
Iso-Map adjusts the report density without violating the
uniformity of the reports. The isopositions along an isoline
are filtered evenly according to their gradient directions.
Thus, the degradation of precision on the constructed contour
map is evenly distributed along the contour boundaries
without breakages at extreme points. Fig. 9a and 9b compare
the contour regions built under different report densities.
Note that, although more reports better help the sink
construct a precise contour map, evenly filtering some of
the reports indeed does not degrade the result by much.

4 DISCUSSION

Iso-Map utilizes the reports from isoline nodes to construct
contour maps. Compared with existing works which rely on
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Fig. 9. The contour regions built under different report densities.

the aggregation of sensory readings from all nodes in the
field, Iso-Map largely restrains the scale of sensor reporting.
We will first conduct a theoretical analysis on the incurred
traffic scale and prove that Iso-Map reduces the number of
reports from O(n) to O(y/n). Such suppression on data
generation dramatically reduces the traffic overhead across
the network as one reporting source indeed brings many
hop by hop data deliveries along its routing path to the
sink. We further show that Iso-Map considerably reduces
the computational overhead introduced to the nodes.
Indeed, Iso-Map outperforms existing approaches in terms
of both communicational and computational complexity.

4.1 Network Traffic

To study the network traffic incurred by Iso-Map, we first
simplify our analysis to a continuous domain, where sensor
nodes cover the field with infinite density. The isoline nodes
are then represented by continuous isolines. We prove that
the total length of a constant number of isolines is O(n!/?),
given that all isolines are “well behaved” and do not
intersect each other. It is natural that different isolines do
not intersect each other due to the principle of contour
mapping. We impose the constraint of “well behaved”
curves as [2] did to exclude some pathologically shaped
“monster curves” such as Peano’s space-filling curves,
which hardly emerge as contour boundaries in practice [21].

Definition 4.1. A curve is well behaved if for square box of any
side x that intersects the curve, the length of the curve inside
the box is less than cx for some constant ¢ > 1.

The definition is equivalent to observing that the curve
has a Hausdorff dimension of 1 [4]. In practice, most of the
nonbizarre curves have Hausdorff dimensions of 1. Such a
definition directly leads to the following observation. For
any constant number K isolines within an n'/? x n!'/? square
area, the total of their lengths L is less than cn!'/? which is of
O(n'/?) size. Now, we extend our analysis into a more
practical scenario, where sensor nodes are uniformly
deployed over the square field in a discrete manner. We
assume that the density of nodes is p, and each isoline
triggers a stripe of isoline nodes along it with a small width
of € (¢ corresponds to the node communication radius,
which is small enough compared with the size of the field).
In fact, the continuous scenario discussed above is an
extreme case of this when p — oo and ¢ — 0.

Theorem 4.1. For any constant number K contour regions
within a square area of n sensor nodes, the number of isoline
nodes is O(n'/?).
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Proof. The side of the square area is calculated to be (n/ p)l/ 2,

We then snatch the K isolines from the K contour
regions. As shown according to Definition 4.1, the total
length L of the K isolines is O((n/p)"/?) = O(n'/?). The
area of the stripe is approximated by the path integral
through these isolines:

K K

According to (6), the number of isoline nodes scattered in
the stripe is thus p- S = O(n'/?). O

According to Theorem 4.1, the generated traffic from
isoline nodes is thus limited to O(n'/?).

4.2 Computational Overhead

We analyze the computational overhead of 1) the isoline
nodes for local measurements on the 4-tuple parameters
and 2) the intermediate nodes which carry out in-network
filtering to reduce the traffic of reports.

The local measurements conducted by each isoline node
require only local information within the neighborhood. The
computational overhead is bounded by the node degrees.
From the calculating process described in Section 3.3, we
observe that the main computational workload comes from
solving the regression equation of (2) which indeed incurs
O(deg) calculations, where deg is the average degree of each
node in the network. Therefore, the total computational
overhead among all isoline nodes is bounded by O(deg .n'/?).

The intermediate nodes which forward the isoline node
reports normally simply relay the reports without any
computational workload, except with in-network filtering.
They will compare reports from different children nodes
and drop the likely redundant ones. Each comparison
between two reports incurs the calculation of their s, and
sq values. If we focus on each generated isoline node report,
it will be compared at most once with each of the other
reports before it is delivered to the sink, regardless of which
intermediate nodes these comparisons are carried out at.
Thus, the computational overhead within the forwarding
network is bounded by O(N7, ) = O(n), where N,., refers to
the number of isoline node reports and is O(n'/2) according
to the analysis in the previous section. Combining the above
two parts, the computational overhead within the entire
network is O(deg -n'/? +n) = O(n).

4.3 Comparison with Existing Approaches

In this section, we draw a comparative study with existing
approaches. TinyDB [8] is the first work targeting the
application of contour mapping. In its aggregate-free
version, all sensor nodes are required to report and a
simple algorithm is employed without data aggregation. In
TinyDB, the number of sensor reports is n and the
computation within the network is proportional to the
network size, O(n). The eScan [28] creates the residual
energy map based on the aggregation of all sensor node
reports. Thus, the number of sensor reports is also n. The
aggregation algorithm provided in eScan merges different
scans with O(n?®) operations in the worst case for each
sensor, so the total amount of computation within the
network is bounded by O(n'). INLR [27] requires sensor

TABLE 1
Overhead Comparison of Different Approaches

Approach Traffic Gen- | Network Sensor  De-
eration Computation ployment

TinyDB O(n) O(n) Grid

eScan O(n) Oo(n*) Free

INLR O(n) Qn') Grid

Data Suppression O(n) Q(nd) Grid

Iso-Map O(Jn) O(n) Free

reports from all nodes for the in-network contour map
construction. By the model based partial map aggregation,
the network computational overhead of INLR reaches at
least Q(n'?). The data suppression protocol [15] requires a
subset of node reporting which is proportional to the total
number of nodes in the network, so the generated traffic is
O(n). Each node is required to measure the data similarity
with its 2-hop neighbors, so the computational overhead in
the network is no less than (nd), where d is the node
degree of the 2-hop neighborhood.

Table 1 summarizes and compares Iso-Map with the four
existing approaches. Iso-Map incurs the lowest traffic cost
and network computation when performing contour map-
ping. Note that among the five approaches, only the Iso-
Map and eScan protocols have no requirement on the
sensor deployment. The TinyDB, INLR, and Data Suppres-
sion protocols basically rely on a regular deployment of
sensor nodes into grids. They use sink interpolation to deal
with irregular node deployment, which potentially de-
grades the fidelity of the resulting contour map.

5 PERFORMANCE EVALUATION

We implemented the Iso-Map protocol and conducted trace
driven simulations to evaluate its performance. We utilized a
real map of underwater depth as our testing data which is
obtained from sonar measurements in Huanghua Harbor.
Basically, n sensor nodes are uniformly deployed to monitor
the depth values over a normalized n'/? x n!'/? surveillance
field with a density of 1. The radio range of sensor nodes
determines the average degree of each node. Experimentally,
we find that to keep a connected communication graph, the
radio range should be no less than 1.5, which results in an
average node degree of 7. This corresponds to a reasonable
deployment of one node per 400 m? in practice, if we setup a
30 m radio range for the MICA2 motes [9]. Perfect link layer is
assumed in this simulation, in which the data delivery is
guaranteed through performance based routing dynamics
[13], [26] and MAC layer retransmissions [18], [20]. For our
Iso-Map approach, we select the border range of isoline value
¢ to be 0.05T, i.e., 5 percent of the value range between two
consecutive isolevels. We first evaluate the produced fidelity
of Iso-Map under various settings. Then we study the
network overhead incurred by Iso-Map on the construction
of the contour map, including communicational overhead as
well as computational overhead. Finally, we bridge the
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Fig. 10. Performance of isobath contour mapping. (a)-(c): The contour maps created by TinyDB algorithm, under different normalized densities of
sensor nodes (4, 1, and 0.16); (d)-(f): the contour maps created by Iso-Map, under different normalized densities of sensor nodes (4, 1, and 0.16).

network overhead with energy consumptions of sensor
nodes and evaluate the energy efficiency.

We utilize a 400 m x 400 m section of the underwater
depth measurement as our testing data (refer to Fig. 1 for the
measurement and its contour map). We compare the
resulting fidelity of Iso-Map with that of TinyDB, which
achieves the best fidelity compared with all other existing
approaches. Since the TinyDB protocol requires a grid
deployment of sensor nodes, when simulating the TinyDB
protocol, we deploy the sensor nodes into grids instead of
randomly. For both approaches, node density is the dom-
inating factor affecting the fidelity of the contour mapping.
Thus, we simulate different node densities of deployment to
reflect the impact. We study the cases with 400 nodes,
2,500 nodes and 10,000 nodes separately. If we normalize the
field size to be 50 x 50 units, the normalized node densities
are 0.16, 1, and 4, respectively. In practice, all three cases
correspond to reasonable node densities for different
applications requiring more or less surveillance precision.

Figs. 10a, 10b, 10c depict the resulting contour maps of
TinyDB under the above node densities. Figs. 10d, 10e, 10f
depict the resulting contour maps of Iso-Map. For the Iso-
Map protocol, we choose the two parameters angular
separation s, = 30 degree and distance separation sq =4 for
in-network filtering. The isoline reports received at the sink
are 112, 89, and 49. The number of received reports is not
linear to the node density since in-network filtering helps
raze out most of the redundant reports, especially under
dense node reporting. Clearly, both approaches degrade in
precision as the node density decreases, but both still
produce acceptable fidelity maps.

Fig. 11a plots how the mapping accuracy is affected by
the deployed node density. Here the mapping accuracy is
measured as the ratio of the accurately mapped area in the
resulting contour map to the whole area. The normalized
density of 1 corresponds to deploying 2,500 nodes in the

400 m x 400 m field. The mapping accuracy of both TinyDB
and Iso-Map rapidly jumps to a high level above 80 percent
as the deployed node density increases. In all cases, Iso-Map
is slightly below TinyDB but with comparable accuracy. We
also compare the different settings for the ¢ value that
determine different border range of isolines. The result
shows that a rough border range definition helps to select
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Fig. 11. Contour mapping accuracy against (a) node density and
(b) node failures.
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Fig. 12. Hausdorff Distance between the real isolines and estimated
isolines against (a) node density and (b) node failures.

adequate isoline nodes when the node density is low,
leading to better fidelity in such cases. However, when the
network has enough node density, such a setting leads to
worse fidelity due to the errors on the isolevel measurement.

Fig. 11b shows that the accuracy of both two protocols
degrades as the ratio of node failures increases. TinyDB
employs sink interpolation to recover the map from lossy
isobars, which leads to the degradation of the accuracy. Iso-
Map suffers from the loss of isoline node reports, which
enlarges the distortion of mapped isolines. Overall, the two
protocols perform similarly under node failures. More than
40 percent node failures make both of them unusable.
Similar with the previous result, when the border range of
isolines ¢ is large, the Iso-Map approach is more tolerable to
the node failures because of the redundant isoline nodes
selected. However, the best fidelity achievable is lowered
down due to the errors on the isolevel measurement.

In Fig. 12, we use the Hausdorff Distance to evaluate the
isoline accuracy. Hausdorff Distance [17] measures the
maximum departure between two curves, thus providing
an accuracy metric on the irregularity of the estimated
isolines to the real ones. In Fig. 12, the Hausdorff Distance is
normalized with the 50 x 50 unit field. Similar with Fig. 11,
the irregularity of both two protocols grows intensive as the
node density decreases and as the ratio of node failures
increases. In this experiment, we test Iso-Map in both
random and grid sensor deployments. We find that Iso-
Map indeed benefits from the grid sensor deployment.
Compared with the random sensor deployment, Iso-Map
achieves a more regular output on the estimated isolines.
The irregularity of the output becomes excessively intensive
when the network is very sparse. In TinyDB, the irregularity
is relatively stable, i.e., proportional to the grid size of
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Fig. 13. Contour mapping accuracy against (a) node density and
(b) node failures.

deployment. Thus as the density of sensors are decreased,
such irregularity linearly increases (to the square root of the
node density). However, TinyDB is more vulnerable with
sensor failures. TinyDB is of higher error when both
approaches are implemented on the grid deployment,
especially when the failure rate is high.

5.1 Network Traffic Overhead

It is well known that the network traffic consumes the
largest portion of the sensor energy and is considered the
most important metric used to evaluate the energy
efficiency of a WSN. In this section, we contrast Iso-Map
with the most recent work INLR [27], as well as with the
well-known TinyDB protocol.

We first investigate the impact of in-network filtering
on the reduction of the number of reports. Fig. 13 plots
how different settings of s, and s; result in different
extents of filtering, where 2,500 nodes are scattered over
the 50 x 50 field with a normalized density of 1. It is
obvious that higher tolerances of s, and s, lead to larger
reductions of the reports (see Fig. 13a) but with a lower
mapping accuracy (see Fig. 13b). Such a feature provides
Iso-Map with flexibility to trade accuracy with traffic. In
later simulation runs, we choose the setting of s, = 30°
and sq = 4, which achieves substantial savings of network
traffic while keeping a high accuracy of contour mapping.

We vary the network diameter so that three protocols are
simulated over the fields of different sizes. With a constant
node density of 1, the network diameter varies from 10 to
50 hops. Each parameter in a report uses two bytes, such as
the sensory value, position, gradient, etc. Fig. 14a plots the
traffic overhead of the three protocols in terms of kilobytes.
Consistent with the theoretical analysis, the traffic overhead
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incurred by TinyDB and INLR grows rapidly while Iso-
Map mainly relies on the isoline node reports, imposing
much less traffic.

We then vary the node density and again, we can see that
Iso-Map outperforms TinyDB and INLR, as shown in
Fig. 14b. Although all three protocols incur traffic overhead
proportional to the node density, Iso-Map has a much
smaller growing factor. The combinational view in Fig. 14
exhibits the dominating scalability of Iso-Map.

5.2 Node Computational Overhead

In the aggregation based protocols, intermediate nodes
conduct heavy computations to aggregate different map
segments. On the other hand, in the nonaggregation
protocols, such as TinyDB, etc., reports are delivered to
the sink without aggregation, which means the intermediate
nodes simply store and forward packets. Thus, TinyDB
actually gives a lower bound on the average computational
overhead of each node.

We compare the computational overhead pernode in
TinyDB, INLR, and Iso-Map. Fig. 15 plots the computational
intensity of the three protocols under different network sizes.
The computational intensity of each protocol is normalized
with the operational overhead of each arithmetic operation.
As shown in Fig. 15a, TinyDB and Iso-Map constrain the
computational intensity at a low level, while INLR intro-
duces a relatively huge amount of computations on each
sensor node, and such overhead grows with the network
size. Compared with INLR, the difference between TinyDB
and Iso-Map becomes negligible. Fig. 15b exhibits an
amplified view of Iso-Map, showing that the pernode
computational intensity does not grow with the network

size. Indeed, Iso-Map scales well as the network size
increases with each sensor node bearing a constant computa-
tional overhead.

5.3 Energy Efficiency

We bridge the communicational and computational over-
head with the energy consumption of the sensor nodes. We
presume our sensor platform to be Mica2 mote, which is
currently the de facto standard platform for sensor networks.
Its 8 MHz/8 bit Microcontroller ATmegal28 consumes an
active power of 33 mW and provides computation at
242 MIPS/W. Its CC1000 transceiver has a data transfer rate
of 38.4 Kbps and consumes 29 mW power for receiving and
42 mW power for transmitting (at 0 dBm) [9], [19], [24]. We
transform the communicational and computational over-
head into energy consumption according to the above
capability data. Fig. 16 plots the pernode energy consump-
tion for contour mapping under the three different protocols.
Iso-Map significantly reduces the energy cost compared with
TinyDB and INLR. More importantly, while in TinyDB and
INLR, the pernode energy cost increases with the network
size, Iso-Map minimizes this effect, which provides higher
scalability for large scale sensor deployment.

6 RELATED WORK

Contour mapping has been widely proposed as a compre-
hensive method for visualizing sensor fields. Much research
on sensor network monitoring can utilize contour mapping
to provide a global view of the monitored fields from which
the occurrence and development of environment changes
can be easily captured [3], [12], [14], [23].
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Hellerstein et al. [8] propose the first framework for
contour mapping integrated in the TinyDB system. In
TinyDB, sensor nodes are deployed into grids. Each sensor
node builds a representation of its local cell and delivers it
back to the sink. The sink accordingly constructs an isobar
contour map based on the received representative values of
different grids. Possible in-network aggregation is sug-
gested in this paper; different isobars may be aggregated in
the transmission if their attribute values are similar.
However, there is no detailed description for the aggrega-
tion algorithm in this paper. Xue et al. [27] further develop
an in-network aggregation algorithm, INLR, for the isobar
contour mapping to reduce the traffic overhead. INLR
makes contour regions from close sensor reports of similar
readings and delivers contour regions back to the sink. A
numerical data model is built for each contour region to
describe the distribution of attribute values within the
region. INLR aggregates contour regions according to their
data model during the delivery. The sink constructs the
contour map from the received contour regions. eScan [28] is
a similar work that monitors the residual energy of sensor
nodes by constructing contour maps of the network. An
eScan is defined as a collection of (VALUE, COVERAGE)
tuples and each tuple describes a region of COVERAGE
where each node has its residual energy within VALUE =
(min, max). A tuple initially consists of only an individual
sensor node and gets aggregated with other tuples with
adjacent COVERAGE and similar VALUE. The sink even-
tually collects different tuples and creates the eScan contour
map based on them. Although the above protocols achieve
contour mapping with reduced traffic cost through in-
network aggregation, they do not reduce the scale of the
generated traffic. The traffic generated from all sensor nodes
is still high, and the traffic generation none the less scales
proportional to the node number of the network, O(n).

The recently proposed protocol in [15] performs aggre-
gation from the data suppression of sensor nodes to reduce
the traffic overhead. The sensor node suppresses its data if
there is another sensor node “nearby” transmitting similar
data and the transmitted data is considered as a representa-
tion of the local field. Upon receiving a subset of sensor
readings, the sink performs interpolation and smoothing to
obtain the approximation of the contour map. The data
suppression protocol reduces the generation of sensor
reporting, and thus, reduces the traffic overhead. The
fidelity of the resulting contour map is highly related to
the rate of data suppression in the network. Limited data
suppression can be performed to achieve an acceptable

contour map approximation. As stated in the paper, the
suppression algorithm ensures that the range spanned by
suppressed nodes is bounded within the 2-hop neighbor-
hood, so the traffic generation is indeed lowered by a factor
of the node degree within 2-hop neighborhood. Never-
theless, the traffic generation scales linearly with the
number of nodes in the network.

Isoline aggregation [22] shares some similarities with our
work. It proposes to reduce the traffic overhead by
restricting sensor reporting from nodes near the isolines.
However, the paper neither specifies how the sensor nodes
detect the isolines passing by nor how the sink recovers the
isolines from the discrete reports from sensor nodes.

7 CoNcLUSIONS AND FUTURE WORK

We propose Iso-Map, which achieves energy-efficient con-
tour mapping by collecting reports from isoline nodes only.
Our theoretical analysis shows that Iso-Map outperforms
previous protocols in terms of communicational and compu-
tational cost in the network. Iso-Map reduces the generated
traffic from O(n) of existing protocols to O(y/n). We also use
trace-driven simulations to compare Iso-Map with existing
protocols, and the results show that Iso-Map achieves high
fidelity maps with significantly reduced overhead. The
scalability of Iso-Map is superior, which makes Iso-Map
feasible for the large-scale deployed sensor networks.

We conducted a field study at Huanghua Harbor and
investigated the practical application scenario of monitoring
the siltation of the sea route. We analyze the advantages and
feasibility of deploying an echolocation sensor network for
this scenario. We show that it will be of great benefit to utilize
Iso-Map to construct contour maps over the sensor network
in order to monitor the siltation instead of hiring boats that
constantly cruise over the sea area, as is currently done.

Our future work includes building a prototype system at
Huanghua Harbor and testing our Iso-Map protocol on this
prototype. We hope the implementation experience helps
us further understand the efficiency and scalability of the
Iso-Map design.
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