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Abstract—Device-free hand-writing systems identify the content that a user writes by hand movement in the air, thus providing an
intuitive human computer interface. In this paper, we propose WIRITE, a Wi-Fi hand-writing recognition system built with commodity
Wi-Fi APs. Unlike most existing machine learning based hand-writing recognition systems, which are often subject to severe limitations
in generality, e.g., high training overhead when adapted across hand-writing alphabets, environments, and users, WIRITE is designed
with unique consideration of its generality when applied to practice—being application-transferable, environment-agnostic, and
user-independent. With little training overhead, WIRITE behaves inclusively to different users, environments, and applications,
stemming from a comprehensive design of signal processing that is built into its core machine learning model. Extensive evaluation is
conducted with five users for three applications, i.e., recognizing Digits, English letters, and Chinese characters, in realistic office
environment. The experiment results demonstrate that WiRITE provides at least 0.9 accuracy in various combinations of users and

applications with 0.93 accuracy in average.

Index Terms—Wi-Fi sensing, gesture recognition, human computer interaction, CSI sanitization, antenna measurement

1 INTRODUCTION

RF-based passive sensing has been widely studied for appli-
cations including localization and tracking [1]-[3], activity
and gesture recognition [4]-[7], human biometric identi-
fication [8]-[10], to name a few. Among those is device-
free hand-writing, for which passive sensing is supposed
to identify the content that a target user writes in the air
such as digits and letters. Users are not required to wear
extra hardware and natural human-computer interface is
provided compared with traditional mechanisms like a key-
board or an e-pencil, particularly when serving emerging
VR/AR applications.

Wi-Fi based hand-writing has attracted enormous atten-
tion compared with alternative technologies like UWB [11],
[12], FMCW [13]-[15], acoustic [16], [17], etc., due mainly
to its ubiquitous infrastructure availability that can po-
tentially ease commercialization. Most Wi-Fi based hand-
writing systems, so far, are constructed based on channel
state information (CSI), which is accessible from commercial
Wi-Fi chipsets [18], [19]. CSI essentially carries information
about the effects of the wireless medium (multipath reflec-
tion, diffraction, scattering, etc.) to a Wi-Fi signal manifested
as the attenuation of signal amplitude and the rotation of
signal phase on spectrum — which can be used to infer
hand-writing gestures.

Direct hand-writing estimation concerns complicated
signal processing including signal path separation, denois-
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ing, channel parameterization, etc., which is greatly limited
by the CSI resolution and precision that commodity Wi-Fi
hardware can offer. Many recent works study the adoption
of machine learning (ML) based approaches [20]-[22] which
take CSI data as input to a classification model for identi-
fying the associated hand-writing gestures. The ML-based
approaches largely alleviate the requirement on signal reso-
lution and precision, since it is no longer needed to resolve
the multi-path signals but only to ensure recognizable CSI
patterns for identifying hand-writing gestures.

ML-based approaches, however, face a major challenge
regarding the generality of the trained ML model, which is
rooted from the disparity between the distributions of train-
ing data and testing data. For example, the hand-writing
habits of specific users and the ambient environment during
system operation are often different from the conditions
where the ML model was trained. That may likely result
in different CSI patterns for the same class of hand-writing
gestures between training and testing, thus significantly
degrading the accuracy. Suffering from the above issue, ap-
plication of most existing approaches entails extremely high
training efforts that include training a general model for
all possible combinations of user-environment factors. That
incurs huge amount of human efforts in tedious data col-
lection and labeling process for massive amount of samples,
often over thousands [4]. Making it worse, whenever the ML
model’s functions are extended, e.g., enlarging supportable
hand-writing alphabets from English letters to include Chi-
nese characters, the excessive human efforts are repetitively
incurred, which makes such systems impractical.

In this paper, we propose WiRITE, a Wi-Fi hand-writing
recognition system, which addresses the generality issue
in ML-based solution. WiRITE adopts a similar concept
to domain adaptation, one kind of transfer learning, that
transforms Wi-Fi CSI samples, i.e., target domain features, to
images containing hand movement trajectories, i.e., source
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domain features, so that existing human efforts invested in
training image based hand-writing models can be reused in
this different domain. That is, WiRITE trains a ML model by
exploiting the readily available standard “vanilla” databases
of handwritten images. The generality of WiRITE can thus
be ensured, considering the fact that these public databases
already cover massive amount of training samples of differ-
ent writing habits and across different target alphabets. For
example, 814,255 samples of 52 English letters collected from
3,600 writers are included in EMNIST database [23], and
3,721,874 samples of 7,185 Chinese characters from 1,020
writers are included in CASIA database [24].

To enable the domain adaptation, WiRITE entails a com-
prehensive design of signal processing and builds that into
its core ML model. WiRITE is built with two commodity
Wi-Fi APs, one for transmitting and the other for receiv-
ing, which operate in their default configurations, i.e., 3x3
MIMO on a 20 MHz channel. The signal processing module
in WiRITE targets at eliminating random hardware noise,
extracting the path length change of the reflected path,
estimating the hand movement trajectory, and translating
the trajectory to an image, which collectively project the
messy raw CSI samples (target domain) to handwritten
images (source domain).

With the above design considerations, WiRITE provides
the generality in three-folds: (i) Application-transferrable,
i.e., the WIiRITE core model can easily be adapted to address
new hand-writing alphabets, e.g., Digits, English letters,
and Chinese characters with little training overhead to it;
(if) Environment-agnostic, i.e., WiRITE minimizes impacts
from hardware and environment noises, and as a result is
oblivious to their dynamics when in use; and (iii) User-
independent, i.e., WiRkITE is robust to the singularities in
Wi-Fi signal reflection and scattering as well as the variety
in hand-writing habits from different users. The evaluation
results conducted with five users for three applications, i.e.,
Digits, English letters, and Chinese characters, in a typical
office environment, demonstrate that WiRITE provides at
least 0.9 accuracy in all the combinations of the users and
applications with 0.93 accuracy in average.

In summary, we claim the following contributions.

o WIRITE is the first Wi-Fi hand-writing recognition sys-
tem that advances the state-of-the-art by its generality in
users, environments, and applications.

« We propose novel techniques including self-cancellation
of CSI noise, direct path nulling, dynamic component
extraction and sample augmentation that collaboratively
effect to provide the high accuracy and better generality.

o We implement a real-time system with commodity Wi-
Fi APs, with which the performance of WiRITE can be
corroborated by real world experiments.

e We corroborate WiRkITE performance by conducting ex-
tensive real world experiments.

The rest of this paper is organized as follows: in Sections 2, 3,
and 4, we elaborate on the key design and techniques of
WIRITE in supporting generality of applications, environ-
ments, and users, respectively. In Section 6, the performance
of WiRITE is evaluated with extensive real world experi-
ments. In Section 8, we discuss the related work, and finally,
we conclude the paper in Section 9.

2 WIRITE DESIGN

The application-transferability is a key design goal of
WIRITE. Different hand-writing applications are well mod-
ularized in WiRITE design, whereby transferring to differ-
ent applications, to WiRITE, is no more than changing a
URL linking to corresponding public handwritten image
database. In current version, WiRITE can freely switch
among Digit, English letter, and Chinese character appli-
cations as illustrated in Fig. 1.

The key enabler is the domain adaptation design that
projects messy CSI samples (target domain) to handwritten
images (source domain), which enables mode switching
between different applications by only plugging different
online public databases used in training the handwritten
image classification model. WiRITE possesses two work-
flows, i.e., offline and online, which collectively materi-
alize WIiRITE. Online workflow mainly takes the task of
translation from CSI to handwritten image followed by the
classification of the image. Offline workflow concentrates on
training general handwritten image classification model to
get prepared for online inputs.

2.1 Online

Online workflow involves the process of translating CSI
samples collected when a WIiRITE user performs hand-
writing gesture, to a recognizable handwritten trajectory
image, as well as classifying the handwritten image to a
final recognition class, i.e., a digit, an English letter, or a
Chinese character, in different applications, respectively.

Domain adaptation. As Fig. 1 indicates, the raw CSI sam-
ples are processed by three main functional blocks to be
translated as a handwritten trajectory image. i) The first
block is to extract the dynamic path information from the
raw CSI samples, which is the information (phase and
amplitude) of the reflected path off from the hand of a
WIRITE user. A novel CSI sanitization function is developed
to effectively eliminate the noises caused by side-effects
of the hardware of commodity Wi-Fi APs, and a novel
path separation method called dynamic component extraction
is applied to suppress interferences from environment. ii)
Given the extracted dynamic component information, the
trajectory of the WiRITE user’s hand movement is estimated
by trajectory estimator. WiRITE targets at correct classifi-
cation of the hand-writing, and thus is only interested in
identifying the movement pattern of the user’s hand rather
than its precise locations. All possible hand trajectories
starting from all the possible locations are derived and
input to ML model for a comprehensive final decision. The
rationale of the design comes from a well-known feature
of image classification, i.e., correct classification is feasible
to a scaled and rotated version of an image sharing similar
features with the original one. iii) The derived trajectories
are transformed to images conforming to the acceptable
format of handwritten image classification ML model.

Image classification. The output of domain adaptation, i.e, a
set of scaled and rotated handwritten trajectory images, are
recognized by a pre-trained image classification ML model.
Instead of taking the final classification results, WiRITE
makes use of the last softmax layer of the ML model, which
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produces probability density function (PDF) with respect to
candidate hand-writing classes. WiRITE exploits this feature
in the image classification, by synthesizing the PDFs of all
the trajectory images, and makes the final decision based
on the synthesized PDFE. We call it ML-based maximum
likelihood estimation.

2.2 Offline

The task of offline workflow is to provide well-trained im-
age classification ML models to support online classification,
where the ML models for different applications are trained
separately.

Public image database. There are multiple public databases
providing adequate samples of handwritten images for
various languages/alphabets. WiRITE benefits from these
databases, especially, in i) the generality of the sample im-
ages ascribed to the diversified writers, and ii) free training
set, which ease application transferability. In this paper, we
consider three types of applications, i.e., Digits, English let-
ters, and Chinese characters. The three corresponding public
databases are MNIST [25], EMNIST [23], and CASIA [24],
respectively. The detailed information regarding the training
sets is summarized in Table 1.

ML model architecture. WiRITE trains three different con-
volutional neural network (CNN) models to support the
three applications, respectively. Specifically, the models for
Digits and English letters have a common architecture due
to the same format of the training samples provided by
the public databases, i.e., 28x28 pixel image. This model
is a simplified version of VGG-16 [26], a well-known CNN
model for image classification, and hence, we call it VGG-10,
because it consists of 10 layers (7 convolutional layers and

Fig. 2. VGG-10 model adopted in WIRITE.

3 fully-connected layers) as shown in Fig. 2!, where C indi-
cates number of classes. All the layers use ReLU activation
functions as in the original VGG-16. For Chinese characters,
we adopt the architecture of M5 model as reported in [27]
which is similar in its design nature to the VGG models.

In the following, we will outline the most telling features
of WiRITE in light of its design goal in environment agnos-
ticism and user independence.

3 ENVIRONMENT AGNOSTICISM

WIRITE is resilient to environmental variations manifested
as CSI hardware noises, and ambient interferences from
surroundings. We start with an elaboration on the CSI
sanitization technique of WiRlITE, followed by an intelligent
antenna arrangement scheme capable of mitigating the am-
bient interferences.

3.1 CSI Sanitization

CSI is complex numbered frequency response of the signal
that expresses the signal’s amplitude attenuation and phase
rotation subject to transmission, reception, and the propaga-
tion residing between them. However, besides the channel
information, raw CSI is entangled with amplitude and phase
noise that are resulted from different sources including the
hardware and signal processing modules of both transmitter
and receiver [18], [28]-[30]. Specifically, we formulate raw
CSI sample H' as follows,

H/(k:apa T’natm) = H(k,p,Tn,tm) 'E(k,l),?”n,tm) (1)
1. The simplification is introduced due to the reduction of the hidden

layer depth, caused by the input image size, i.e., 224 x 224 x 3 of VGG-16
v.s. 28 x 28 x 1 of WiRITE.
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Fig. 3. WIRITE hardware architecture.

The raw CSI derived from a certain packet (p) represents the
channel rotation measured from three dimensions — differ-
ent subcarrier (k), different Tx antenna (¢,,) and different
Rx antenna (r,). The raw CSI is related to the physical
multipath channel (/) by the noise factor (£), which can
be represented in detail as follows,

E(k,p, T, tm) = &1 (p, ) €2 (D@ Feslrntn) g
where ¢; denotes the ith type of noise classified by its
varying dimension. Specifically,

s 1 represents the amplitude noise that varies over dif-
ferent packets (p) and Rx antennas (r,). Such noise is
caused by the imperfection of hardware amplifier and
automatic gain control (AGC) function.

e £o adds phase noise to H. This type of phase noise is
resulted from the mixed effect of packet detection delay
(PDD), sampling frequency offset (SFO), and sampling
time offset (STO), and varies over different subcarri-
ers (k) and packets (p).

« c3 represents another type of phase noise that varies over
different packets (p). This type of noise is constant at
different subcarriers and is caused by carrier frequency
offset (CFO).

e ¢4 represents the third type of phase noise. This noise
remains constant over time but could vary with different
Tx antennas (t,,) and Rx antennas (r,) because it is
caused by the initial phase offset of transmitter and
receiver phase-locked-loops (PLLs).

The noise is difficult to resolve because it comes from
various sources and varies with different dimensions. Pre-
vious CSI calibration approach [18], [31] removes the phase
difference between different measurements but cannot elim-
inate the hardware noise. The CSl-ratio based de-noising
method [32], [33] derives the difference bewteen two wire-
less links which can hardly be modeled as an deterministic
function of channel dynamics. The other filtering-based CSI
sanitization method [34], [35] assumes distinctive frequency
variation pattern which however is not always the case.

We propose a novel method that achieves self-
cancellation of the noise, which is facilitated by a carefully
designed hardware architecture as shown in Fig. 3. We in-
troduce three RF splitters and several coaxial cables (RG50)
to construct two wired links, i.e., L (r1,t3) and L (ro,t3),
denoted in purple and blue solid lines, respectively. These
two reference links are used to sanitize links L (r1,t1) (dotted
purple line) and L (r2,t2) (dotted blue line), respectively.
That is, we sacrifice two links to make their channel wired,
and hence, constant over time, so their CSI variations caused

4
TX antenna 1
‘ < —AS:5cm(theory)
n ’ 20.8 + AS:5cm(measured)
< i Hand 2 — AS:20cm(theory)
o H 206 + | O AS:20cm(measured)
g H T g —AS:35cm(theory)
H 5 .
g '—I \ & 0‘4E:| O AS:35cm(measured)
@ B ; € ot
£ H /D%noe 502
< ‘ =4
10 20 30 40 50
RX antenna

Distance (cm)

(a) Experiment environment. (b) Signal strength of reflected path.

Fig. 4. Impact of antenna spacing on signal strength of reflected paths.

only by the noise, can be used as reference to sanitize the
other two wireless links that carry both noises and useful
information on wireless channel variations. Mathematically,
the ratio between CSI samples of L (r1,t1) and L (rq1,t3) of
the same packet at the same subcarrier can be expressed as
H'(ri,t1) pealrt)—ea(r, ta) H (r1,t1) 3)
H' (Tl,tg) H(T‘l,t:;)
since the common €1, €2 and €3 are eliminated by division
operation. Since initial PLL offset, €4, and the reference link
CSI, H (rq,t3), are constant in time, W is also
constant in time. Thus, the CSI ratio can be regarded as
ground truth CSI of the wireless link, H (rq, t1), multiplied
by a time-invariant coefficient. To further derive the ground
truth CSI, ¢4 and H (r1,t3) should be compensated (The
splitters and cables used for hardware connection may intro-
duce additional phase offset, but is also time-invariant). The
time-invariant coefficient can be measured manually and
calibrated accordingly, based on the calibration methods
reported previously, e.g., [36], [37]. However, since the time-
invariant complex coefficient does not affect the variation
pattern of the ground truth CSI — it only introduces con-
stant scaling and rotation to each CSI sample — which
WIRITE exploits in hand movement trajectory estimation,
the tedious calibration step can be skipped to save manual
efforts. Last, we calculate all the CSI ratios according to Eq. 3
with respect to all the subcarriers, and take the average of
them as the final sanitized CSI. Note that the averaging
operation is applied to eliminate white noise imposed at
all subcarriers, which is not explicitly denoted in Eq. 3 for
simplicity. In short, for each packet reception, we have two
sanitized CSI samples, i.e., H ¢ and Hj, obtained by

H (k,rp,tn)
H; S — — 7 4

K;Hl(k,’f'n,tg), @
where n can be 1 or 2. Unless stated otherwise, CSI sam-
ples mentioned in the following sections are sanitized CSI
samples.

3.2 Antenna Arrangement

WIRITE is empowered by a carefully designed antenna
arrangement, which improves the resilience to ambient in-
terferences, caused by nearby moving objects or human.
We focus on two issues: i) The spacing between Tx and Rx
antennas, and ii) their orientations.

Antenna spacing. The spacing between Tx and Rx antennas
affects the signal to interference ratio (SIR); signal indicates
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Fig. 6. Impact of antenna orientation on direct path signal strength.

the reflected signal from target user’s hand, and interference
indicates the reflected signal from other moving objects
or human. In WIiRITE, we deliberately minimize the spacing
between Tx and Rx antennas to maximize the SIR. That is,
consider the free space path loss model, where the received
signal strength is manifested as a logarithmic decay (in dB
scale) with the increase of the path length. Suppose the
user’s hand is closer to the antenna pair than the interferer. If
we reduce the antenna spacing, the strengths of both signal
and interference are shifted to the left along a logarithmic
decay curve with a fixed path length offset, resulting in
increased gap between them, i.e., SIR.

To verify this, as Fig. 4(a) illustrates, we measure the
strength of the reflected path (highlighted in red),> when
moving a hand away from the antenna pair. We conduct
the measurements with different antenna spacing, i.e., 5cm,
20cm, and 35cm, respectively, and compare the measure-
ment results with the free space path loss model [38].
Fig. 4(b) clearly indicates the logarithmic decrease of the
normalized signal strength of the reflected path when the
hand moves away from the antenna pair. We observe that,
with the decrease of the antenna spacing, the curve becomes
steeper, which suggests that the small antenna spacing is
more favorable for increasing SIR and hence the resilience
of the system to the ambient interference.

Antenna orientation. Flash effect may arise, if the Tx and
Rx antennas are located too close [39]. Typically, the direct
path signal is much stronger than the other indirect path sig-
nals, and might overwhelm the receiver’s analog to digital
converter (ADC), preventing it from detecting the minute
variations of the indirect signals, which is the major signal

2. The reflected path signal strength is obtained by dynamic compo-
nent extraction method described in Section 4.1
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Fig. 7. Direct path suppression effect of crossing antenna arrangement.

source of WiRITE. Signal nulling can alleviate flash effect
using MIMO [39], [40], while, it entails modifications of the
transmitter’s precoding matrix, which is not feasible in com-
modity Wi-Fi devices. WiRITE adopts another approach to
suppress the direct path signal. The most widely used class
of antenna in Wi-Fi is dipole antenna which WiRITE uses as
well. We conducted a simulation to investigate the radiation
pattern of dipole antennas. The result is detailed in Fig. 5.
As we see from Fig 5(a), the radiation pattern resembles the
donut shape where the minimum gain appears at the center
of the radiation pattern. Figure 5(b) details the antenna gain
at different elevation angle (YoZ plane). We observe that
the antenna gain reduces quickly when 0 deviates from
90 degrees. For example, when 0 equals to 30 degree, the
antenna gain is -15dB, and thus the direct path is attenuated
by near 20dB when compared to the maximum radiation
direction. We deploy the two dipole antennas crossing each other,
adjusting the doughnut-shape radiation pattern, such that the
null directions of the two antennas facing to each other, thus
suppressing the direct path signal. We call such deployment
‘crossing’. Fig. 6(a) illustrates the ‘crossing’ antenna arrange-
ment compared with the typical ‘parallel” arrangement. We
measure the strength of the direct path signal using the
two deployments, respectively. Fig. 6(b) shows the mea-
surement results. We observe that irrespective of antenna
spacing, ‘crossing” arrangement always yields much weaker
received signal strength (RSS) than “parallel’. In particular,
for the smallest antenna spacing (5cm), ‘crossing’ yields
about 10 dB signal suppressing, which is comparable to that
of MIMO beam nulling reported in [40]. Figs. 7(a) and 7(b)
compare the distributions of CSI samples collected with the
5cm antenna spacing when a hand moves away from the
antenna pair. It is clear to observe that, with ‘crossing’,
the CSI samples exhibit clear spiral shape conforming to
the theoretical expectation, while ‘parallel” exhibits a noisy
pattern as a result of the flash effect.

Fig. 8 illustrates the final antenna deployment of
WIRITE, where the left and right links are composed of
5cm spaced Tx and Rx antennas following the ‘crossing’
arrangement. The two links are spaced about 50cm, which
is determined empirically for best system performance (We
provide more detailed discussion on the impact of varied
link spacing in Sec. 7). Possible using scenario of such
deployment include smart table/desk design where the
antennas can be integrated on the surface as PCB patch.

4 USER INDEPENDENCE

WIRITE reacts to different users inclusively regardless of
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Fig. 8. WIiRITE antenna arrangement.

their writing habits, hand shapes, and surfaces for Wi-Fi
signal reflection. This is enabled by a domain adaptation
scheme that projects CSI samples to handwritten trajectory
image, followed by generalized ML-based image classifica-
tion.

4.1 CSls to Trajectory Images

Each CSI sample may include i) direct path signal, ii) re-
flected path signal from static objects such as walls, and iii)
reflected path signal caused by user’s hand. We refer to the
first two types of signals as static components, and the third
type as dynamic component.

In the case where there are N paths in total, among
which the Nth path is the dynamic component, we can write
the CSI as

N-1

H(p) = Z amﬁ +an (p) P ()
i=1

where p, A, a; and [; indicate packet index, wavelength, ith

path strength, and th path length, respectively. Because the

static components are constant over time, they can be treated

as a whole. Accordingly, Eq. 5 can be simplified as the sum

of two components, i.e., static and dynamic, expressed as

—i2miy(p
H(p) = ase” +aq(p)e " = Hy+Hi(p) (6)
where we use s and d to indicate static and dynamic compo-
nents, respectively. Our goal is to extract the H; (p) for each
packet p, since its phase is related to the hand movement.
Consider a case where the dynamic component is re-
flected by a hand moving away from Tx-Rx antennas as
shown in Fig. 9(a). Along with the movement, the length
of the reflected path (red arrow) increases, which results
in clock-wise phase rotation of the dynamic component.
Fig. 9(b) illustrates the CSI samples of packets p;, p;+1, and
Di+2, in complex plane, where the black and red vectors
represent H; and H, (p), respectively.

Dynamic component extraction. The dynamic component,
H, (p), is extracted based on the above observation: Within
a short period of time, the CSI samples will fall on a circle
centered at the static component, Hg, given that the amplitude
of the dynamic component is constant. If we apply circle fitting
(CF) on several consecutive CSI samples, the center of the
fitted circle becomes the estimate of H, and the difference
between CSI sample, H (p), and the circle center is the
estimated dynamic component, Hy (p). That is,

~ Ha(p) = H (p) — H, @)
where Hy (p) and H, are the estimates of Hy (p) and H, re-
spectively. H, can be obtained by applying CE i.e., CF (Sg),
where Sy indicates the set of CSI samples used in CF.
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Fig. 9. lllustration of dynamic component rotation caused by hand move-
ment.

In practice, however, i) the amplitude of the dynamic
component is not constant during a longer time period. It
decreases with the increase of the path length, and ii) the
static component slowly changes due to the ambient en-
vironmental dynamics, e.g., someone else walking around.
To deal with the above issue, we adaptively perform CF
multiple times to multiple different segments of the CSI
samples, by applying CF windowing, which continuously
identifies the proper segment for CF, referred to as CF
window, when scanning the entire CSI samples sequentially.
Each CF window is selected to satisfy the necessary condi-
tion for CF, i.e., the static component and the amplitude of
the dynamic component do not change much within a CF
window.

Fitted signal to noise ratio. To quantify the quality of a CF
window, we define a metric called fitted signal to noise ratio
(fSNR), which is defined as

rad®

JSNR = VSE’ (8)
where rad indicates the radius of the fitted circle, indicating
the signal strength of the dynamic component, and M SE

indicates the mean squared error, i.e.,
w
1

MSE = ; lrad — |H (i) — CF (Sg)||>,  (9)
given that a circle is fitted to W consecutive CSI samples.
If all the CSI samples perfectly fall on a fitted circle, fSNR
will become positive infinity, while if the CSI samples devi-
ate from the circle, fSN R will decrease due to the increase
of MSE. Fig. 10(a) illustrates the concept of fSNR with
signal (S) and noise (N) components in its definition.

CF windowing. Suppose we have N CSI samples. From the
first to (N — 9)th CSI samples, where ¢ is the smallest size
of CF window, we treat each of those samples as the start
of a new CF window. We try to identify the end of each
CF window, which would be the earliest CSI sample that
makes the fSNR greater than a threshold ~y. For example,
for the first CF window, we apply circle fitting to the first
0 CSI samples and see whether the fSNR>~. If so, the
first CF window is determined; otherwise, we progressively
increment CF window and check the fSNR, until the
fSN R exceeds 7, or the CF window exceeds its maximum,
w, or no CSI sample remains, whichever comes first. In the
end, all possible CF windows across the whole CSI samples
are identified. We perform CF to each identified CF window,
and extract the dynamic components of CSI samples. Note
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Fig. 10. lllustration of dynamic path extraction by circle fitting.

that CF windows are very likely to overlap, that is to say a
CSI sample could be the member of multiple CF windows
that yield different results of dynamic component. This
issue is resolved by letting each CSI sample select the CF
window yielding the greatest fSNR. CSI samples which
do not belong to any CF windows are discarded. Fig. 10(b)
illustrates all the identified CF windows denoted as black
circles with a set of CSI samples collected when a WiRITE
user was writing ‘B’ in the air. The small red circle indicates
the center of each fitted circle.

Trajectory estimation. The basic idea of trajectory estima-
tion is to use the ranging results provided by the two links to
intersect the hand reflecting point, as illustrated with Fig. 8.
If the initial location of the moving hand is given, we can
continuously track the hand movement trajectory based on
the path length changes derived from the phase difference of
consecutive dynamic components. Specifically, A;,, the path
length change from packet p; to packet p;1, is obtained by

A ~ ~
iy (p) = 5= (2Ha(p) = £Ha (pi1)) . (10)

derived from Eq. 6. For Eq. 10 to be effective, we need
to ensure that the phase difference should be less than
m, as otherwise, the ambiguity will occur among multiple
candidates, i.e., Ag = a2m. We ensure this by applying
adequately high Wi-Fi transmission rate for sampling, i.e.,
333 Hz, which can catch up to 45m/s movement speed.

While the estimation method is able to catch the hand
dynamics, without the initial location of the hand, the
ground truth trajectory cannot be derived. An inaccurate
initial location will result in a scaled and rotated trajectory
image, which however may not affect the ML-based image
recognition as long as the scaling and rotating factors are
bounded. Therefore, WiRITE derives trajectories starting
from all possible initial locations in a predefined detec-
tion region, which is a 50cm by 50cm rectangle as shown
in Fig. 11(a). Fig. 11(b) illustrates the multiple potential
trajectory candidates, where the ground truth trajectory is
highlighted in red. When all potential variations of the
trajectories are input to the ML model, we observe that
the ML model performs very well even for the trajectories
being scaled and rotated — all the trajectories are classified
as the ground truth ‘B” with high probabilities as shown in
Fig. 11(b). WiRITE ML-based maximum likelihood estimator
thus comprehensively makes the final decision considering
all the possible trajectories.

Trajectory to image. The hand movement trajectories may
have different sizes caused by different writing habits of

Prob(B): 1

(a) Detection region.

(b) Candidate trajectories.

Fig. 11. Multiple candidate trajectories.

different users. Trajectory to image function normalizes the
trajectories to images with unified size and format. At the
same time, trajectories are transformed into images with the
same format as that of the training samples as indicated in
Table 1. Specifically, each trajectory is translated into black
and white (bilevel) image by setting each location as 1, and
0 otherwise. The bilevel image is then size-normalized to fit
in a pixel box with size of 20x20 (digit and English letter) or
56x56 (Chinese character) while preserving their width and
height aspect ratio. It is further translated and padded with
zero pixels to conform to the format of the training samples.
The pixels of the image are finally normalized to ensure the
maximum and minimum values being 1 and 0, respectively.

4.2 Image Classification

Public database. As formerly stated, three ML models
for recognizing Digit, English letter, Chinese character, are
readily trained independently. The training sets of the three
models are provided by MNIST [25], EMNIST [23], and
CASIA [24] public databases, respectively. The detailed in-
formation of the training sets is summarized in Table 1. Note
that the three vanilla databases already cover vast number of
samples and diversified writers, which benefit the generality
of the trained ML models.

Sample augmentation. However, with only vanilla training
samples, we face two challenges: i) WiRITE derives the final
trajectories with multiple scaled and rotated versions of
ground truth trajectory image. We need a tuned model to
recognize the scaled and rotated versions. ii) Most of the
vanilla images are collected from multi-stroke writing on
papers, while the hand trajectory images derived from Wi-
Fi sensing are from unistroke hand motion in the air. To
address above issues, we introduce sample augmentation to
vanilla training sets. Specifically, we add rotated versions of
vanilla images to the training set, where the rotation degrees
are —30° and 30°, respectively.’. Also, we manually add
some unistroke hand-written images obtained by WiRITE
to the training sets for some hand-writing classes selected
based on the vanilla ML model recognition results. Fig. 12
illustrates the process of sample augmentation, which con-
sists of sample rotation and manipulation. Section 5 includes
more details of the sample augmentation adopted in WiRITE
implementation.

3. We did not add scaled versions of the images because we find
that even without this procedure, the trained model can effectively
recognize the scaled images.
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Fig. 12. Sample augmentation used in WIiRITE.

Fig. 13. WIiRITE prototype.

Maximum likelihood estimation. The final classification of
hand-writing is conducted by ML-based maximum likeli-
hood estimator. Given a set of rotated and scaled versions
of trajectory images, the estimator will make final decision
by taking all of them into consideration. That is, given
the hand-writing class set C, the classification result c is
determined by

argmax L (¢
ceC

ch (11
where K, and p. indicate the total number of rotated and
scaled trajectory images, and the probability of ith trajectory
image belonging to class ¢, which is provided by the softmax
output, respectively.

5 IMPLEMENTATION

Hardware. WiRITE is built with two 802.11n commodity
Wi-Fi APs [41] operating in 3x3 MIMO mode on 20 MHz
channel at 5 GHz band. As Fig. 13 illustrates, in addition
to the Wi-Fi APs, WiRITE’s prototype also includes three
RF power splitters/combiners used in CSI sanitization. CSI
samples are collected by Atheros CSI tool [18] running on
the receiving AP and are forwarded to a host PC with 333 Hz
sampling rate.

ML model training. Three ML models, i.e., Digit, English,
and Chinese, are trained with image samples provided by
three vanilla public databases as detailed in Table 1* with
zero labeling efforts. For Chinese, among the 7,185 charac-

4. For English, the number of classes is 37 instead of 52, since 15
lowercase letters, i.e., ‘¢’,V,§,'k’,’l,/m’, /o’ ,/p’,'s’,/ W,V /W /X,y 2z, are
combined with the respective uppercase letters as a signal class due to
the similar shapes between uppercase and lowercase as recommended

in [23].
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Fig. 14. Sample augmentation effect.

TABLE 2
Sample augmentation details.

| Digit | Letter | Chinese

# augmented classes 2 5 18
# styles per class 5 5 5
# samples per style 10 10 10

ters incorporated in CASIA database, 200 most frequently
used characters are selected to reduce the experimenting
overhead. The host PC used in training is equipped with
Intel Xeon E5-1650 v4 (CPU) and 32 GB memory. Empiri-
cally, each ML model reaches its stable state after 20 to 30
epochs, that is, approximately 30 minutes.

Sample augmentation (SA). The three vanilla ML mod-
els are retrained with augmented training sets to resolve
dissimilarity between unistroke trajectories obtained from
WIRITE and their corresponding multi-stroke versions in
vanilla databases. Table 2 summarizes the number of
augmented classes for the three applications, respectively,
which are chosen based on the recognition results of the
vanilla ML models. For each class, we manually generate
five representative unistroke trajectory images provided by
WIRITE’s outputs. Each image is added 10 times to the
training set to increase the weight on the final ML model.
Fig. 14 visualizes examples that compare the recognition
results before and after applying SA which suggests its
efficacy. We observe that the labels as indicated in ‘After
SA’” are all correct labels, indicating that the augmented
samples do help correct the final ML model. The overall
extra labeling efforts of SA are only 10 for digits, 25 for En-
glish letters, and 90 for Chinese characters, suggesting very
high transferability of WiRITE core model when adapted
across different applications. With SA, the test accuracies of
the three ML models, when applying to the test samples
provided by the three vanilla databases, are 0.992 (Digit),
0.962 (English), and 0.94 (Chinese), respectively.

6 EVALUATION

Methodology. We evaluate the performance of the proposed
system with the following three aspects. 1) User variety: How
does the system react inclusively to different users? We consider
the impact from two factors — different hand size/shape and
different writing styles. We first evaluate the variation of
the end-to-end performance caused by each factor, and then
analyse the detailed impact of the user variety on received
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signal quality and handwriting trajectory estimation. 2) En-
vironment variety: How does the system perform inclusively to the
environmental interference caused by ambient reflections? Specif-
ically, we consider two kinds of interference — CSI noise and
ambient moving dynamics. Raw CSI sample is noisy in both
amplitude and phase due to imperfect hardware control.
The channel dynamics caused by people moving around
may interfere with the CSI time series shaped by the user’s
handwriting. The impact of the two factors always add up
together and mess the handwriting signal. We evaluate the
impact of each factor separately. 3) Realistic scenarios: How
does the system perform in realistic scenarios? We evaluate the
joint impact of user variety and environment variety on
the end-to-end performance in a typical office so that to
assess the accuracy and robustness of the proposed system
in practice.

Data collection. Our experiment includes 15 voluntary
users who contribute their handwriting data to the system
evaluation. We transmit continuous Wi-Fi packets to sample
the handwriting activity. For the evaluation of user variety,
each user writes English letters following the templates
designed with different size and various writing styles. To
assess the performance with ambient interference, we collect
handwriting samples when the activity is exposed to the
environmental dynamics that is intentionally created by a
walking interferer. We finally collect handwriting data at a
typical office environment without deliberately controlling
any possible impact factors (e.g., handwriting size, ambient
movement, etc).

Metrics. We apply two metrics to WIiRITE evaluation, i.e.,
recognition accuracy that indicates the ratio of the correctly
recognized tests to the total number of tests, and Dynamic
Time Warping (DTW) distance [42] that indicates the level
of difference between two hand-writing trajectories — the
greater the DTW distance the higher the difference between
two trajectory images.

6.1 User Variety

Different users may affect WiRITE’s performance due to
different writing sizes and/or styles. Their hand shapes and
surfaces are also different, resulting in different responses in
reflecting or scattering Wi-Fi signals. We run experiment
with English letter recognition as a vehicle to examine
various user factors to WiRITE performance.

Different sizes. To see the performance limit of WiRITE in
terms of trajectory size, we provide reference templates of
English letters in squares with three different side lengths,
i.e., 5cm, 10cm, and 15cm, to a user, who in the test writes
each letter of each template size 10 times. Fig. 15(a) depicts
the CDF of the recognition accuracy with respect to the three
template sizes. We observe that 5cm side length leads to
as low as 0.3 recognition accuracy. When the side length
increases, i.e., to 10cm and 15cm, WiIiRITE achieves the
accuracy above 0.9 in most cases. The average accuracies
for the three side lengths are 0.87, 0.97, and 0.99, respec-
tively. Fig. 15(b) further presents the statistics of the width
and height distributions of the hand-written trajectories
observed in the experiment. We see greater heights coming
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Fig. 15. Different size impact.

from test samples of bigger template sizes®. The results
suggest that WIiRITE is able to provide reasonably high
recognition accuracy for hand-writing recognition with over
10cm by 10cm input sizes.

Different styles. WiRITE is inclusive of different writing
styles by exploiting the versatility of vanilla databases. We
evaluate this by deliberately selecting five templates of
different styles for each English letter (in 15cm). The five
styles are chosen to make them as different from each other
as possible. Each style is written three times, such that we
have 15 samples per letter. Fig. 16(a) gives the CDF of DTW
distances among those samples. ‘intra” indicates the DTW
distances obtained by comparing each detected trajectory
with its ground truth, while ‘inter” means the comparison
among the trajectory images of the same letter but across dif-
ferent styles. To obtain the ground truth, we set up a printed
template paper for reference aside the experiment testbed.
The test user points her finger tip at the template character
and moves her hand along the printed trajectory. The hand-
moving trajectories are converted to images which serve
as ground-truth samples. The ground-truth collection is
repeated for different template of each English letter. The
statistics show that in the case of ‘intra’, DTW distance
between the detected trajectory and its ground truth is
always less than 20, while the differences become greater
than 20 for letters of different styles in ‘inter’, which tells
that the differences across styles are indeed much higher
than that introduced by Wi-Fi sensing. Fig. 16(b) gives the
CDF of WIRITE recognition accuracy. The result shows that
with SA, the accuracy is higher than 0.9 in most of the cases,
resulting in 0.96 in average (v.s. 0.91 accuracy without SA),
which suggests the generality of WiRkITE and the efficacy of
SA in dealing with the style variation.

Different users’ hands. The performance of WiRITE by its
design principle should not be affected much by different
users” hands. To verify this, we analyze the WiRITE per-
formance with 15 different users. The users are given the
same letter templates (with 15cm side length), and write
each template 5 times. Fig. 17(a) summarizes the average
reflected signal strength as been received at RX of the left
or right pairs, respectively, with respect to the 15 users.
We see that, even when the user’s hand is located at the
same locations, the reflected signal strength varies much.
WIRITE exploits the relation between phase and distance,
and hence, is robust to the variation of absolute signal

5. The scattered distributions are due to the scaled and rotated
versions of the ground truth trajectories.
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Fig. 17. Recognition accuracy and DTW distance statistics of different
users.

strength. Fig. 17(b) gives WiRITE performance by showing
the CDF of the DTW distance of the users. Each DTW
distance is obtained by comparing detected trajectory to its
ground truth. We find that DTW distances of all the users are
upper-bounded by 20, which is the upper-bound of those
of ‘intra” shown in Fig. 16(a), showing the WiRITE’s ability
in extracting true trajectories regardless of the variation of
users’ responses to Wi-Fi signals. The average hand-writing
recognition accuracies for the users range from 0.94 to 0.98.

6.2 Environment Variety

The environmental impacts come from two factors: 1) CSI
noises caused by hardware imperfection, and 2) ambient
interferences caused by surroundings. We evaluate the re-
silience of WiRkITE to environmental impacts with the two
factors.

CSI noises. We collect a sequence of CSI samples when
moving a hand away from the Tx-Rx antenna pairs.
Figs. 18(a) and 18(b) compare the raw and sanitized CSI
samples, respectively, in terms of their normalized ampli-
tudes and phases. We observe that after applying WiRITE’s
CSI sanitization, which does not leverage any smoothing
and filtering process, the CSI samples are corrected and
exhibit a clear continuous and repetitive pattern in both
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Fig. 19. Evaluation of recognition accuracy with ambient interferences.

amplitude and phase domains, which would have been
overwhelmed under the noise in raw CSI samples. When
the amplitude and phase noise is left unremoved, the hand
tracking function would be totally corrupted and cannot
recover the continuous trajectory for further recognition.

Ambient interferences. We evaluate WiRITE’s resilience
to ambient interferences, gained from its crossing antenna
arrangement which maximizes the SIR. In the experiment,
when the test user moves his hand to write English letters
(in 15cm), another person (interferer) walks around the site,
away from the center of the antenna arrangement area by
1m, 2m, and 3m, respectively, as depicted in Fig. 19(a).
Fig. 19(b) presents how WiRITE recognition accuracy varies
when the interferer distance increases from 1m to 3m. When
the interferer distance is 1m, the accuracy can be as low
as 0.3, with the average accuracy of 0.74, while, with the
increase of the interferer distance, the average accuracies are
increased to 0.93 and 0.96 in the cases of 2m and 3m, respec-
tively. The result tells that when the interferer distance is
more than 1m, the accuracy can be very close to that of non-
interference (‘free’), i.e., 0.98 in average. Fig. 20 summarizes
the recognition accuracy regarding 26 uppercase letters for
1m interference distance. We observe that the most cases still
have reasonably high accuracy except five cases, namely, ‘A’,
‘E’, ‘F’, ‘Q’, and ‘W’, that achieve lower than 0.7 accuracies.
Fig. 21 shows WiRITE’s outputs for the five cases. All five
cases entail relatively more strikes, and due to that, longer
writing time compared to other letters, thus suffering more
severe interferences. When the interferer distance increases
to 2m, as Fig. 21 shows, the output images are closer to
ground truths. Note that in real world, the interferer is
mostly located far from the testbed (larger than 1m), so the
impact of ambient interferer can be ignored according to our
measurement in Fig. 19(b).
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6.3 Evaluation with Realistic Scenario

We conduct experiments in a typical indoor office envi-
ronment. A realistic scenario is achieved by ensuring four
factors: 1) multiple users, 2) at different locations, 3) with
possible ambient interferences, and 4) hand-writing in pre-
ferred sizes and styles of individual users.

As Fig. 22 illustrates, we let five WiRITE users at five dif-
ferent locations (marked in red circles) write Digits, English
letters, and Chinese characters in their preferred sizes and
styles, during normal office hours. The number of normal
office members sharing the same office during the exper-
iments was 10 in average, who intermittently generated
ambient interferences, when passing by the WiRITE users.
Each hand-writing class is written 10 times by each WiRITE
user. In particular, for the application of Chinese characters,
each user randomly selects 50 Chinese characters among the
200 candidates to reduce evaluation overhead. Note that the
experiments was conducted without any re-training of the
ML model for adapting to any specific WiRITE user.

Fig. 23(a), 23(b), and 23(c) show the CDF results of
WIRITE recognition accuracies for Digits, English letters,
and Chinese characters (simple characters that can be com-
pleted within a few strokes), respectively, with aggregated
results from the five WiRITE users. WiRITE achieves 0.8
or higher accuracies in more than 80% cases for all three
applications. The comparative results (with and without
SA) also suggest that some hand-writing classes may be
subject to low recognition accuracies due mainly to the
unistroke and multi-stroke dissimilarity. With SA, WiRITE
gains extra 4.4%, 6.8%, and 7% improvements of the recogni-
tion accuracy in the three applications, respectively. Table 3
summarizes the average recognition accuracies of the five
WIRITE users in the three applications, respectively. The
average accuracies are higher than 0.9 in all cases with 0.93
on average.

To show how the writing habits of the five WiRITE users
differ, Fig. 24(a) and 24(b) present the statistics of their hand-
writing sizes and the DTW distances across different users
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Fig. 22. The realistic experiment environment.

TABLE 3
Average accuracy.
| U1 | U2 | U3 | U4 | U5 | Average
Digits 0.97 0.92 094 | 097 0.92 0.94
English letters 095 | 092 | 094 | 094 | 093 0.93
Chinese characters | 0.93 | 093 | 0.94 | 0.94 0.9 0.92
Average 095 | 0923 | 094 | 095 | 0.916 0.93

for a same hand-writing class, respectively. As Fig. 24(a)
suggests, in most of the cases, the users write with the
height of at least 10cm, which is better supported by WiRITE
as discussed in Section 6.1. Fig. 24(b) suggests that the
DTW distances range from 5 to 40, showing substantial
diversity in their writing styles. With that, the reasonably
high WiRITE accuracy across the five users suggest high
generality of WiRITE over user variety.

Comparative experiment. We conduct experiment to verify
the improvement of WikITE on dealing with realistic scenar-
ios. The experiment compares our system with a state-of-
the-art Wi-Fi based handwriting recognition system called
Wi-Reader [32]. We implement the processing flow of Wi-
Reader including data partitioning, butterworth de-noising
and subcarrier selecting with the CSI obtained from TL-
WDR4310 hardware. We measure the recognition accuracy
of English handwriting letters of the systems with the
impact of 1) varying handwriting styles/strokes and 2)
ambient human movement.

TABLE 4
Recognition accuracy of WIiRITE and Wi-Reader at different using
scenarios.

Handwriting Style/Stroke ~ Ambient Movement

same different without with
WIRITE 96% 95% 95% 93%
Wi-Reader [32] 92% 63% 91% 49%

Table 4 presents the comparative results. As we can see,
WIRITE provides over 93% averaged accuracy for all four
different using scenarios. In comparison, the recognition
accuracy of Wi-Reader drops by 29% when the test user
performs handwriting in different styles and strokes and
by 42% when there exists ambient human movement. The
comparison proves the improvement of WiRITE on user
generality and environment agnosticism.

7 DISCUSSION

System latency. We measure the end-to-end system latency
to quantify the recognition speed. We wrote 26 English
capital letters and recorded the elapsed time during the
derivation of the recognition result. According to the result,
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the median system latency is 6.84s. For 80% of the tests, the
system can recognize the handwriting within 7.8s. We in-
vestigate the operation delay of the two sequential blocks —
trajectory estimation and image classification. The measure-
ment result shows that trajectory estimation contributes 55%
of the total latency. With such observation, we further re-
duce the system latency by accelerating trajectory estimation
by optimizing the channel sampling rate. Without loss of
recognition accuracy, we finally reduce the system latency
to 5.23s in median. The latency can be further reduced with
the support of high-end GPU (currently not adopted).

One model for all applications. Our current design trains
separate models for the three different applications. To fur-
ther improve the application transferability, we may train
a single model that applies to the recognition of differ-
ent applications/domains. A proof-of-concept experiment
is conducted to verify the feasibility of applying one model
for different applications. Specifically, we train one network
model with a macro-dataset that contains 5000 handwrit-
ing image samples covering 10 digits, 5 English letters
and 5 Chinese characters. The results indicate 91%/92%,
92%/92% and 89%/90% median/averaged accuracy when
VGG-16 [26], Inceptionv3 [43] and ResNet50 [44] is adopted,
respectively. The accuracy should remain when the model
is adopted as the image classifier of WiRITE. We believe the
performance can be further improved (for higher recogni-
tion accuracy and more identifiable categories) by adopting
a more powerful network model.

Simplifying the network model. The current system uses
VGG network to highlight the application transferability —
the recovered trajectories of different handwriting applica-
tions (even complicated ones like Chinese characters) can
be directly fed into existing image classification models
(where VGG network is a well-known one) for recognition.
To implement the system with a simpler network for better
efficiency, we can simply replace the VGG model with a
CNN model or even a feed-forward network of several

layers depending on the complexity of specific classification
task. For example, to recognize digit numbers which only
contain 10 categories, we can adopt a simple three-layer
feed-forward network. To classify Chinese characters which
exhibit more complex pattern and contain hundreds of
categories, we can try a CNN model with multiple filters
for fine-grained feature extraction and identification.

Impact of different link spacing. The recognition accuracy
of WIiRITE is related to the distance between the two links.
We conducted an experiment measuring the recognition
accuracy of English letters when the distance varies from
35cm to 65cm at the step of 5cm. The result shows that the
accuracy is optimized to be 93% when the distance is set
to 50cm, and equals to 85% and 89% when the distances
are 45cm and 55cm, respectively. The accuracy is lower at
the other distances. To explain the reason, note that with
human handwriting activity, there are three types of signal
path within the system — the reflected path from human
hand (p;), the direct path within one pair (p2) and the mu-
tual interference between the two pairs (p3). The three paths
add up at the Rx antenna of each pair. Therefore, both p, and
p3 cause interference on p; and possibly suppress the hand
writing information. When the two links are closely spaced,
the mutual interference (i.e., p3) becomes strong, and could
overwhelm the variation of the hand reflected path (i.e., p1).
When the two links are set far from each other, the hand
reflected path (i.e., p1) becomes weak, but the power of the
direct path (i.e., p2) does not change, so the hand moving
variation also gets suppressed. Considering the impact of
the two interference, the distance between the two links
should be wisely selected. For the current system setting,
the space of 50cm provides the optimal system performance.
We adopt this setup for system implementation.

Impact of hidden interference signal. The possible us-
ing scenario of the proposed system could be an indoor
room/office where hidden interference signal exists (e.g.,
Wi-Fi beacon). According to the CSMA/CA channel access
control of Wi-Fi, when exposed to nearby hidden inter-
ference, the transmission will be pending until no on-air
signal is detected. Therefore, for our system, the interference
effectively reduces the sampling rate of the continuous hand
tracking. We experimentally investigate how the accuracy
varies with different sampling rate. The result indicates that
the accuracy remains high (> 97%) when the sampling rate
is no less than 200 Hz, which is testified to be easy to achieve
based on our empirical study with real world Wi-Fi usage.

Recognizing consecutive characters. The current design of
the system may not be able to handle the recognition of
consecutive multiple character inputs. The reason is mainly
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because the machine learning model (CNN) adopted in the
system is trained with single character dataset (MNIST,
EMNIST, CASIA). We may improve the current system
towards recognizing consecutive characters in two ways:
first, we can design a character segmentation module that
can detect the different characters within one word/string
and separate them. This module pre-processes the input text
and its output (multiple single characters) is fed into the
CNN model that handles character recognition. Second, we
may replace the current CNN model with a more advanced
model (e.g., CRNN[g]) that is able recognize the consecutive
sequential characters. But this model incurs larger training
overhead to achieve accurate performance. We leave this
design as future work.

8 RELATED WORK

Prior works on hand-writing recognition systems fall into
four categories from the perspective of data acquisition:
camera-based, wearable-based, acoustic signal-based, and
RF signal-based.

Camera-based. Camera-based systems have been well stud-
ied for over two decades [45], [46]. The rational is to detect
the hand from captured images by its appearance and
derive the trajectory when it moves. The signal source can
be visible light [47], [48] or infrared (depth cameras) [49],
[50]. Despite their popularity, these approaches require a
dedicated hardware setup and LoS to the user. Also, it may
be affected by lighting conditions, the variations of the hand
shapes, skin colors, and even textures [50] in separating the
hand from cluttered background image. Privacy is also one
of the primary issues encountered by this line of approaches.

Wearable-based. Another line of approaches rely on motion
sensors embedded in today’s smartphones [51], [52] or
wearables such as smart watches [53]-[55], wristbands [56],
[57], and rings [58], [59]. All such wearable-based systems
require an external device to be equipped by the user, which
restricts the applicable conditions, and brings inconvenience
to users.

Acoustic signal-based. This line of approaches normally
benefit from higher ranging/tracking accuracy due to the
slower propagation speed of acoustic signals compared to
that of RF signals [60]-[64]. EchoWrite [64] proposes an
acoustic based system that is able to recognize different
finger writing English letters. The authors classify the letters
into different groups that are defined with certain combi-
nation of basic strokes, which are identified by the Doppler
shift profiles extracted from the spectrogram of time domain
signal. Although with Wi-Fi signal (which is intrinsically
not comparable with acoustic signal in its ranging resolu-
tion), WiRITE still advances EchoWrite due to its enlarged
recognition diversity (including the three types of input)
and explicit handwriting trajectory estimation. Unlike RF
signals, acoustic signals inevitably suffer from ambient noise
that is inherent to environment (audible and/or inaudible),
and interferences coming from other acoustic devices due to
the lack of standardized MAC protocol, which intrinsically
limits the sensing performance [65].

RF signal-based. High resolution RF sensing entails spe-
cial hardware to exploit ultra-wideband (GHz) transceivers,
multiple antennas, and/or specialized signal modulation
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(e.g.,, FMCW) [3], [30], [66], [67]. For example, mmWrite [67]
proposes a handwriting recognition system based on accu-
rate hand tracking with using millimeter wave hardware.
This system requires the specialized infrastructure that
can support 60 GHz front-end, occupies GHz-level large
bandwidth, and relies on an antenna array that consist of
tens of antenna elements, and thus degrades the ubiqui-
tousness and practicability of the target applications. For
handwriting recognition with commercial Wi-Fi hardware,
most systems [4], [20]-[22], [32], [33], [68], [69] adopt a
similar modality that entails prior training of a ML model
to learn the effect of hand motions on wireless signal pat-
terns, and targets only a pre-defined set of motions without
any functional extensibility from the application point of
view, let alone the burdensome training overhead in tedious
data collection and labeling. For example, WiReader [32]
designs a real-time handwriting recognition system based
on commercial Wi-Fi devices. The system adopts LSTM
to classify the feature space extracted from CSI samples
obtained after pre-processing. However, WiReader can only
support the recognition of 26 English letters with predefined
handwriting pattern. In comparison, our proposed system
(i.e., WIiRITE) is able to recognize hundreds of characters
of three different applications. The improvement on appli-
cation extensibility mainly comes from WiRITE’s capability
of explicit hand tracking, based on which we can visualize
the hand moving trajectory and adopt existing CNN model
directly for recognition. WiDraw [70] is the only Wi-Fi
system that tracks the trajectory of the hand, and identifies
the content with an off-the-shelf text recognition software.
However, since it derives the trajectory by detecting the
AoA variation of direct path signal, WiDraw requires 30 Wi-
Fi transmitters to provide wide range of AoA distribution,
which substantially degrades the practicability. In contrast
to previous solutions, WiRITE is the first Wi-Fi hand-writing
solution that ensures practicability, in that it avoids the
manual training sample collections but provides generality
and extensibility towards different users, environments, and
applications.

9 CONCLUSION

WIRITE is a general and practical Wi-Fi hand-writing sys-
tem. The design of WIiRITE addresses major challenges in
machine learning design and signal processing to achieve
the goal of generality, i.e., application transferability, envi-
ronment agnosticism, and user independence. The perfor-
mance of WIiRITE is corroborated by extensive real world
experiments. Future works include applying WIRITE to
802.11ac Wi-Fi APs for finer signal resolution and employ-
ing more antennas to enable 3D hand-writing and gesture
recognition.
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