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Abstract—Wormhole attack is a severe threat to wireless ad
hoc and sensor networks. Most existing countermeasures either
require specialized hardware devices or make strong assumptions
on the network in order to capture the specific (partial) symptom
induced by wormholes. Those requirements and assumptions limit
the applicability of previous approaches. In this paper, we present
our attempt to understand the impact and inevitable symptom of
wormholes and develop distributed detection methods by making
as few restrictions and assumptions as possible. We fundamentally
analyze the wormhole problem using a topology methodology and
propose an effective distributed approach, which relies solely on
network connectivity information, without any requirements on
special hardware devices or any rigorous assumptions on network
properties. We formally prove the correctness of this design in
continuous geometric domains and extend it into discrete domains.
We evaluate its performance through extensive simulations.

Index Terms—Connectivity, topological approach, wireless ad
hoc and sensor networks, wormhole detection.

I. INTRODUCTION

W ORMHOLE attack is one of the most severe security
threats [1]–[15] in ad hoc and sensor networks. In

wormhole attacks, the attackers tunnel the packets between dis-
tant locations in the network through an in-band or out-of-band
channel. The wormhole tunnel gives two distant nodes the
illusion that they are close to each other. The wormhole can
attract and bypass a large amount of network traffic, and thus
the attacker can collect and manipulate network traffic. The
attacker is able to exploit such a position to launch a variety
of attacks, such as dropping or corrupting the relayed packets,
that significantly imperils a lot of network protocols including
routing [3], [7], localization, etc. [16]. This paper focuses
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on typical wormhole attacks. The adversary is an outsider
who does not have valid network identity. The establishment
of wormhole attacks is independent of the general security
mechanisms employed in the network. The attacker can for-
ward each bit of a communication stream over the wormhole
directly without breaking into the content of packets. Thus, the
attacker does not need to compromise any node and obtain valid
network identities to become part of the network. Using the
wormhole links, the attacker is able to gather enough packets
and exploit the wormhole attack as a stepping stone for other
more sophisticated attacks, such as man-in-the-middle attacks,
cipher breaking, protocol reverse engineering, etc. Wormhole
attacks have posed a severe threat to wireless ad hoc and sensor
networks.

Many countermeasures have been proposed to detect worm-
holes in wireless ad hoc and sensor networks. Those solutions
typically catch the attacks by detecting partial symptoms
induced by wormholes. Generally, existing symptom-based
methods either depend on specialized hardware devices or
make relatively strong assumptions on the networks. For ex-
ample, some approaches employ specialized hardware devices,
such as GPS [3], [6], directional antennas [4], or special radio
transceiver modules [10], which introduce significant amounts
of extra hardware costs for the systems. Other types of ap-
proaches are based on ideal assumptions, such as global tight
clock synchronization [3], special guard nodes [8], attack-free
environments [11], or unit disk communication models [9].
These requirements and assumptions largely restrict their ap-
plicability in networks composed of a large number of low-cost
resource-constrained nodes.

To fully address wormhole attacks in ad hoc and sensor net-
works, we need to answer the following two questions: 1) what
symptoms feature the most essential characteristics caused by
wormhole attacks; and 2) how to gracefully design the coun-
termeasures without critical requirements or assumptions. Our
design goal is to rely solely on network connectivity informa-
tion to detect and locate the wormholes. We focus our study on
a fundamental view on the multihop wireless network topolo-
gies, aiming at catching the topological impact introduced by
the wormhole. More concretely, we explore the fact that a le-
gitimate multihop wireless network deployed on the surface of
a geometric terrain can be classified as a 2-manifold surface of
genus 0, while the wormholes in the network inevitably intro-
duce singularities or higher genus into the network topology.
We classify wormholes into different categories based on their
impacts on topology. We then design a topological approach,
which captures fundamental topology deviations and thus lo-
cates the wormholes by tracing the sources leading to such ex-
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ceptions. Our approach solely explores the topology of the net-
work connectivity and can be carried out in a distributed manner.
We do not require any special hardware devices, yet have no
additional assumptions on the networks, such as awareness of
node locations, network synchronization, unit disk communica-
tion model, or special guard nodes. Although node density im-
pacts on the detection performance of the method, our method
works well in networks with fair node densities, which is veri-
fied by our simulations.

The rest of this paper is organized as follows. We first discuss
those existing studies in Section II, and then formally define
the wormhole problem and its detection methods in Section III.
Section IV characterizes the wormholes in topologies and
describes theoretical principles of a fundamental detection
method. Section V presents our topological detection approach
in discrete networks. We evaluate this work through compre-
hensive simulations and analysis in Section VI. Finally, we
conclude this work in Section VII.

II. RELATED WORK

Existing countermeasures largely rely on observing the
derivative symptoms induced by wormholes residing in the
network. All of these approaches have their respective advan-
tages and drawbacks. Applicability of approaches is largely
dependent on specific system configurations and applications.

Some approaches observe the symptom of Euclidean
distance mismatch in the network. Hu et al. [3] introduce ge-
ographic packet leash. By appending the location information
of the sending nodes in each packet, they verify whether the
hop-by-hop transmission is physically possible and accord-
ingly detect the wormholes. Wang et al. [6] instead verify
the end-to-end distance bounds between the source and the
destination nodes. Zhang et al. [17] propose a location-based
neighborhood authentication scheme to locate the wormholes.
Such approaches require the preknowledge of node locations to
capture the distance mismatch.

Some approaches observe the symptom of time mismatch
in packet forwarding. Hu et al. [3] introduce temporal packet
leash, which assumes tight global clock synchronization and
detects wormholes from exceptions in packet transmission la-
tency. Capkun et al. [10] propose SECTOR, which measures
the round-trip travel time (RTT) of packet delivery and detects
extraordinary wormhole channels. SECTOR eliminates the ne-
cessity of clock synchronization, but assumes special hardware
equipped by each node that enables fast sending of one-bit chal-
lenge messages without CPU involvement. Eriksson et al. pro-
pose another RTT based approach, TrueLink [7].

Some approaches observe the symptom of neighborhood
mismatch that leads to physical infeasibility. Hu et al. [4]
adopt directional antennas and find infeasible communicating
links by utilizing the directionality of antenna communica-
tion. Khalil et al. [11] propose LiteWorp, which assumes the
existence of an attack-free environment before the wormhole
attacks are launched. During the deployment phase, each node
collects its 2-hop neighbors, and LiteWorp then selects guard
nodes to detect wormhole channels by overhearing the infea-
sible transmissions among nonneighboring nodes. They further

Fig. 1. Two examples of wormhole attack. (a) One typical wormhole.
(b) Another wormhole, where geometric distance between wormhole endpoints
does not correctly reflect the network communication path.

propose MobiWorp [12] to complement LiteWorp with the
assistance of some location-aware mobile node.

Some approaches observe the symptom of graph mis-
match under special assumptions of network graph models.
Poovendran et al. [8] present a graph-based framework to
tackle wormholes. Their approach assumes the existence
of guard nodes with extraordinary communication range.
Wang et al. [5] graphically visualize the presence of worm-
holes. They reconstruct the layout of the networks by a
centralized multidimensional scaling (MDS) to capture the
wrap introduced by wormholes. Authors in [9] exploit the
forbidden packing number in the unit disk graph (UDG) and
propose a completely localized approach to detect wormholes
with only network connectivity. It may fail when connectivity
graphs do not follow the UDG model or a wormhole does not
cause an increase of packing number.

Some approaches observe the symptom of traffic flow
mismatch based on statistic analysis on the network traffic.
Song et al. [13] observe the fact that the wormhole links
are selected for routing with abnormally high frequency,
and by comparing with normal statistics, they can identify
the wormhole links. Another statistical approach proposed
by Buttyan et al. [14] captures the abnormal increase of the
neighbor number and the decrease of the shortest path lengths
due to wormholes. The base station then centrally detects
wormholes using hypothesis testing based on prestatistics of
normal networks.

III. PROBLEM FORMULATION

In this section, we present the wormhole attack model and
system assumptions. We formulate the generalized wormhole
problem with network connectivity.

A. Assumptions and Attacker Model

We consider a collection of homogeneous nodes deployed
over a surface of terrain. Each node performs the homogeneous
transmission control and is only capable of communicating with
adjacent nodes in its proximity. We do not force a UDG commu-
nication model. We assume that the coordinates of nodes are un-
available. In wormhole attacks, the attackers tunnel the packets
between distant locations in the network through a high-speed
out-of-band channel. Fig. 1(a) displays a classic example of a
wormhole attack. The attacker’s link is referred to as a worm-
hole link or simply a wormhole. The two ends of a wormhole
link are wormhole endpoints. In this example, represents a
wormhole link in the network connecting two distant areas. The
adversary can capture and replay the packet signals in the phys-
ical layer or simply retransmit the packet in the link layer [3]. In
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this case, as illustrated in Fig. 1(a), nodes and can com-
municate directly as if they were direct neighbors.

We make the common assumptions on wormhole attacks,
which are widely adopted in most previous wormhole coun-
termeasures [3]–[9]. Wormhole attacks are defined based on
the minimum capabilities required by the attacker to perform
these attacks. In particular, the attacker does not need to
compromise any node or have any knowledge of the network
protocol used. Wormhole endpoints deployed by the adversary
do not have valid network identities and do not become part
of the network. The adversary launches outsider wormhole
attacks in the network. We assume that in the network exist
mechanisms that authenticate legitimate nodes and establish
secure links between authenticated nodes. The communications
can be protected by lightweight symmetric-key or asymmetric
cryptographic mechanisms for sensor networks in link and
upper layers [18], [19]. Although wormhole attacks impact
neighboring discovery mechanisms in the physical or link layer
greatly, transmitted data over encrypted network protocols
remain transparent and unobservable to the wormhole attacker,
as formulated in most previous works [3]–[9].

B. Connectivity-Based Wormhole Problem

Poovendran et al. give a formal definition of the wormhole
problem based on the UDG communication graph model in Eu-
clidean space [8]. According to their definition, a communica-
tion link is a wormhole link if the distance between its two end-
points exceeds the regular communication range. Their defini-
tion naturally binds the wormhole features with external geo-
metric environments, and thus neglects the inherent topological
impacts introduced by wormholes. For example, consider the
network shown in Fig. 1(b). The Euclidean distance between
nodes and can be very little and even within the maximum
possible communication range of the two nodes, but they simply
cannot directly communicate due to the obstacle or disturbance
between them. Hence, the current shortest communication path
between nodes and in the network is a long journey, de-
noted as the black lines in Fig. 1(b). If the external bold-line link
is inserted into the network connecting and , the two nodes
are then able to communicate directly, and the shortest path be-
tween them is shortened remarkably. Obviously, in this case a
wormhole attack occurs, but it is not covered by the definition
in [8] because the distance between nodes and does not
exceed the maximum communication range. We hereby present
a more general and fundamental definition of the wormhole at-
tack based only on network topologies.

Definition 1 (Generalized Wormhole Attacks): Let be a
communication graph of a network, and be an attack on the
network. Let be the perceived communication graph after
the attack . Let and denote the lengths of the
shortest paths between an arbitrary pair of nodes

on and , respectively. If ,
we say that is under wormhole attacks (or launches a
wormhole attack). quantifies the
shortened path length of between and . The intensity of the
wormhole attack is defined as

.

Definition 1 formalizes the wormhole attack based only
on the network topologies. The wormholes defined by
Poovendran et al. are indeed all included by our definition.
The attack intensity describes the intensity of the topolog-
ical distortion brought by the wormhole attack. Intuitively, a
larger corresponds to a more intensive distortion on network
topologies.

An ideal wormhole detection method should require as little
preknowledge assumptions about the network as possible. The
only preknowledge that we will assume is the fact that the net-
work is deployed on a continuous geometric surface (2-mani-
fold), where each node locally communicates with neighboring
ones.

IV. CHARACTERIZING WORMHOLES

In this section, we model and characterize wormhole attacks
on network topologies in continuous domain. We first charac-
terize the topological features of wormholes and classify the
wormholes. We then present the principles for the wormhole
detection and prove theoretical guarantees. We extend our dis-
cussion to practical discrete networks in Section V.

A. Preliminaries

We use concepts and terminologies in combinatorial and
computational topology. We first give a brief overview on the
concepts and theories involved in our later discussions. Not all
definitions are necessarily standard. For detailed explanations,
please refer to those topology books [20].

In our paper, we consider network deployment region as
connected, compact, and orientable (two-sided) 2-manifold
surfaces, where each point has a neighborhood homeomorphic
either to the plane or to the closed half-plane. This definition
contains almost all ordinary surfaces observable in our daily
life. In the rest of the paper, all surfaces mean such surfaces
unless we explicitly state otherwise. Given two topological
spaces and , two continuous maps are said to
be homotopic if there exists a continuous map
such that and for all ,

. Any such mapping is called a homotopy con-
necting and . Two curves with the same endpoints on the
surface are homotopic to each other if and only if one can be
smoothly deformed to the other without leaving the surface.
A closed curve is contractible if it is homotopic to a point,
otherwise it is noncontractible. A closed curve is nonsepa-
rating if the surface keeps connected after its removal. A closed
curve is separating if it splits the surface into two or more
components. The genus of a surface represents the maximum
number of simple closed curves that can be removed without
disconnecting the manifold. For example, a sphere and a disc
have genus 0, while a torus has genus 1. Homotopy establishes
an equivalence relation on the set of closed curves on a surface
with any fixed basepoint. It classifies the set of cycles on a
given surface into a set of homotopy classes, where cycles in
each class are transformable to one another while cycles in
different classes are not.
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Fig. 2. Four different types of wormholes on the surface.

Fig. 3. (a) Link�� glued on a spherical surface� . (b) Link�� is contracted
to a single point�. (c) Torus � , which may collapse into���� by contracting
a longitudinal cycle into one point.

B. Characterizing Wormholes

Normally, a wireless multihop network is deployed on the
surface of a geometric environment, such as a plane or a rough
terrain. In this section, we develop principles in continuous do-
main, assuming continuous deployment of nodes over the geo-
metric surface with one-to-one mapping to the points on the sur-
face. In the continuous setting, a legitimate network is a 2-man-
ifold surface without singular points and of genus 0, which is
homotopic to the plane area with a certain number of bound-
aries (holes). We refer to the surface of the legitimate network
as original surface. A wormhole link is a continuous line seg-
ment with extremely short length that connects two points on
the surface.

A new topology space is formed after the wormhole is glued
on the original surface. We subsequently analyze how the dif-
ferent topology spaces are generated after gluing different types
of wormholes. We classify wormholes into four categories, ac-
cording to their topological impacts. Fig. 2 shows the four types
of wormholes. For the Class-I wormhole, both of its endpoints
are located inside the surface. The Class-II wormhole has one
endpoint inside the surface and the other on the boundary of
the surface. The Class-III wormhole has its endpoints on two
different boundaries. The Class-IV wormhole has both of its
endpoints on the same boundary. The four types of wormholes
have different topological impacts on the original surface, and
the complex wormhole attack can be considered as a finite com-
bination of them. We first consider the impact of a single worm-
hole. We then analyze the impact of the combination of multiple
wormholes.

1) Single Wormhole Impact: In this section, we analyze the
impact of a single wormhole in different types, from Class I to
IV. The main results are presented in Theorem 1.

Theorem 1: After inserting one wormhole into the original
surface, the Class-I or Class-II wormhole adds one degenerated
genus, the Class-III wormhole adds one genus and reduces a
boundary, and the Class-IV wormhole adds a boundary.

Class-I and Class-II Wormholes: Fig. 3 shows an example of
how a spherical surface is affected by a wormhole link ,
which represents a Class-I or Class-II wormhole. Fig. 3(a)
shows the new topology quotient space [20], with

link glued on the spherical surface . Fig. 3(b) shows a
homotopy-equivalent topology with Fig. 3(a), which contracts
the line into a single point . The new topology space
can be considered as collapsed from a torus , as shown in
Fig. 3(c). By contracting a longitudinal cycle around the torus,

collapses into . Clearly, such a collapse is not a homo-
topy equivalence from to . In this sense, we say that

contains degenerated genus 1. Strictly speaking, the
new topology space after the injection of a Class-I or Class-II
wormhole is no longer a surface, as the neighborhood of the
wormhole endpoint is not homeomorphic with a plane or closed
half-plane. Informally, we call it a surface with singularities.

Class-III Wormholes: When the surface is of multiple bound-
aries (the network containing physical holes), a Class-III worm-
hole might appear as shown in Fig. 4(a). The topology space of
Fig. 4(a) is homotopy-equivalent to that in Fig. 4(b), which con-
tracts the wormhole link into a point. We focus on the two non-
contractible cycles and in Fig. 4(b). Cycle goes through
the wormhole, and cycle wraps the inner boundary. Fig. 4(b)
can be seen as the deformation retract of Fig. 4(c), where the cy-
cles and in Fig. 4(c) correspond to and in Fig. 4(b), re-
spectively. Indeed, Fig. 4(a)–(c)is homotopy-equivalent to each
other. Typically, a Class-III wormhole concatenates two dif-
ferent boundaries and increases the genus by 1. An interesting
phenomenon happens under a Class-III wormhole. The twisted
cycle and cycle are actually symmetrical to each other in
the sense of topology. If we overturn the surface in Fig. 4(c),
the meridional circle becomes a longitudinal circle, while the
longitudinal circle becomes a meridional circle. Without the
knowledge that is homotopic to a physical boundary before-
hand, we are not able to differentiate and in Fig. 4(b) through
only topologies.

Class-IV Wormholes: A Class-IV wormhole connects two
points on the same boundary. Thus, a Class-IV wormhole adds
a bridge to the original surface and separates the boundary into
two.

In summary of above discussions, we obtain the Theorem 1.
2) Combination of Multiple Wormholes: When two or more

wormholes exist on the surface, Class-I or Class-II wormholes
still introduce independent impacts, each leading to the increase
of degenerated genus by 1. Multiple Class-III and Class-IV
wormholes, however, might introduce interchangeable effects.
As the example shown in Fig. 4(d), two Class-IV wormholes

and are injected on the surface crossing each other. A
single wormhole or adds a boundary to the surface, but
the combination of them adds genus by 1. As a matter of fact,
Fig. 4(d) is homotopy-equivalent to Fig. 4(a)–(c). The example
above can be explained as follows. After the first Class-IV
wormhole or is glued on the surface, the boundary of
the original surface is split into two. When we add the second
Class-IV wormhole, its two endpoints are then on two different
boundaries, so the wormhole is slid to a Class-III wormhole
to the new surface. The consequence is a combination of a
Class-IV wormhole and a Class-III wormhole, leading to the
increase of genus.

When multiple wormholes are injected to the original sur-
face, we can consider them as being sequentially glued to the
surface. The type of each wormhole is determined according to
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Fig. 4. Iimpact of wormholes. (a) Single Class-III wormhole. (b) Homotopic surface when contracting the wormhole link in (a). (c) Homotopic surface to (a) and
(b). (d) Two Class-IV wormholes crossing each other.

Fig. 5. Tracing wormholes by topologies. (a) Wormhole infected surface. (b) Shortest geodesic paths and cut locus. (c) Candidate loop set. (d) Locating Class-I
or Class-II wormholes. (e) Separating loop formed by plain holes. (f) Nonseparating loop introduced by Class-III or Class-IV wormholes. (g) Detecting knit
nonseparating loop pair.

the instant surface when it is glued. Class-I and Class-II worm-
holes will not be affected by previous injected wormholes, while
Class-III and Class-IV wormholes might interchange their types
according to the boundary separation or concatenation. The se-
quence in gluing the wormholes does not affect the final topo-
logical impact. We look into the final impact of multiple worm-
holes and characterize the topology surface with genus , de-
generated genus , and boundaries as , where , ,
and are nonnegative integers. We can obtain the Theorem 2,
which can be proved by following Theorem 1 and induction on
the number of wormholes.

Theorem 2: Given the original surface
and the final surface after wormholes are injected,
there is . Among the

wormholes, there are Class-I or Class-II wormholes
and Class-III or Class-IV wormholes.

According to our preknowledge on the legitimate network
graph, the original surface has genus 0 and degenerated genus 0,
so the original surface can be characterized as , where

is the number of boundaries (which is equal to the number of
inner holes 1). According to Theorem 2, we can calculate the
number of different types of wormholes if we can characterize
the final topology space.

C. Tracing Wormholes

We hereby present the principle of tracing wormholes in con-
tinuous topology surface. For the convenience of presentation,
we take a macroscopic view on the global network. We use an
example of a surface with wormholes shown in Fig. 5 to explain
this design. The proposed algorithm aims to trace wormholes

through detecting the genus and degenerated genus. The main
idea of the algorithm is to find the nonseparating cycles asso-
ciated with wormholes. Two circular lines in Fig. 5(a) indicate
two potential nonseparating cycles in this example.

1) Finding Cut Locus and Candidate Loops: Given the
wormhole infected surface , we first select an arbitrary point
in as the root and run a continuous Dijkstra shortest-path
algorithm [21], as shown in Fig. 5(a). Each point is thereafter
aware of its shortest geodesic paths to the root. We call the set
of points that have more than one shortest path to the root the
cut locus [21], denoted by . After discovering the Dijkstra
shortest paths to the root, we find a cut locus forms there. If
we cut the surface along the cut locus, the surface becomes a
topological disk. The paths marked by bold dashed lines are
part of the cut locus. The point in the cut locus that has at
least three shortest paths to the root is called a branch vertex
of the cut locus, like point in Fig. 5(b). The branch vertices
separate the cut locus into cut paths, like paths , , and
in Fig. 5(b). Each cut path has two endpoints. The endpoint of
a cut path can be a branch vertex or not. We call the endpoint
a leaf vertex if it is not a branch vertex. The leaf vertex can be
on the boundary or in the interior of the surface. We further
distinguish them as a boundary leaf vertex and interior leaf
vertex. We can transform the cut locus into its subgraph
reduced cut locus through repeatedly removing all interior leaf
vertices [21]. We denote the obtained reduced cut locus as

, where is the set of cut paths and is the set of
branch and boundary leaf vertices.

Let be a cut path in the reduced cut locus and
be an arbitrary point on . There are at least two nonhomotopic
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shortest paths from to the root. By concatenating the two non-
homotopic paths, we obtain a loop , and it is clear that loop
is noncontractible. We say that is the witness of . For any
two points , if and are the loops witnessed by
and , respectively, and are homotopy-equivalent [21]. For
each cut path , we arbitrarily select a loop witnessed by
one point and denote it as . Thus we obtain a set of loops

, which we call the candidate loop set. Fig. 5(c)
displays the three candidate loops , , and , corresponding
to the three cut paths , , and in Fig. 5(b), respectively.
Following [22, Lemma 4.2], there are at most
branch vertices and cut paths. Hence, the
number of candidate loops . For each
candidate loop , we do the following steps to clarify the
situations of wormholes.

2) Locating Class-I or Class-II Wormholes: To begin with,
for checking whether or not the loop passes through a degener-
ated genus (Class-I or Class-II wormholes), we consider a small
closed -neighborhood of . , where

denotes the -neighborhood of point on the surface. As
shown in Fig. 5(d), the bold line denotes the candidate loop ,
which passes through a Class-I wormhole with its two endpoints
labeled as and . If there exists a sufficiently small simple
closed curve in that crosses odd times (two curves are
not crossed if they touch [20]), can be marked as a loop through
the Class-I or Class-II wormhole. We call an independent non-
separating loop. We can further contract the cycle in the figure
as much as possible while keeping it crossing odd times. The
cycle eventually contracts to one endpoint of the wormhole,
i.e., node in Fig. 5(d). By this means, we can detect the end-
points of all Class-I and Class-II wormholes.

3) Detecting Class-III or Class-IV Wormholes: The case of
Class-III and Class-IV wormholes is different. As both end-
points of such wormholes are on the boundaries of a surface,
we cannot find such a small cycle enclosing each endpoint of
a wormhole. Instead, we directly detect the genus by checking
whether the candidate loop is a separating or nonseparating
loop. There is an essential difference between the two types of
loops. The separating loop is two-sided, but the nonseparating
loop is one-sided. Fig. 5(e) displays a separating loop that is
formed due to the plain holes on the surface. It is two-sided in
the sense that if we flood from the loop with different colors,
e.g., the two colors never meet. The loop shown in Fig. 5(f),
however, is a nonseparating loop formed by genus. If we flood
light gray and dark gray to its two sides, as shown in Fig. 5(f)
and (g), the two colors ultimately meet with each other because
the loop is one-sided. By detecting the nonseparating loop ,
we detect the genus introduced by Class-III or Class-IV worm-
holes. Let be a point on the cut between the two color areas.
Let be an arbitrary point on . There is a pair of nonhomo-
topic paths from to , one across the area of one color and the
other one across the other color area. The two paths form a loop,
which we denote in Fig. 5(g) as . Apparently, crosses at a
single point . As we will later see in Lemma 4, both and are
nonseparating loops. We call a dependent nonseparating loop
and the partner loop of . Furthermore, we call the two non-
separating loops that cross each other a knit nonseparating loop
pair. We can conclude that there must be at least one Class-III or

Class-IV wormhole in the knit nonseparating loop pair. Yet, as
we mention in Fig. 4(c), the two loops are topologically indistin-
guishable, and we cannot conclude which loop passes through
the wormhole.

To summarize, for each candidate loop , we classify
it into one of the three types: separating loop, independent
nonseparating loop, or dependent nonseparating loop. We
detect and locate Class-I and Class-II wormholes from inde-
pendent nonseparating loops. We detect Class-III and Class-IV
wormholes from dependent nonseparating loops.

D. Correctness and Optimality

We prove that our method is able to detect all the detectable
wormholes correctly. We first discuss the correctness and capa-
bility of this method, and then analyze the theoretical bound in
topologically detecting wormholes.

Theorem 3: Let be the set of candidate loops; all worm-
holes reside within .

Proof: It is not difficult to prove that there exists a
subset , which constitutes a homotopy basis of the
original surface [21]. Let be an arbitrary wormhole on the
surface, and is an arbitrary loop on the surface that passes
through . Since is a homotopy basis, there must exist a
loop homotopy-equivalent to while can be represented
as the concatenation of some proper loops in . It means
must be passed through by at least one loop in .

From Theorem 3, we have confined the locations of all
possible wormholes within the candidate loops , although
we may not be able to locate exactly the endpoints of all
wormholes on . Now, we prove our method is effective and
accurate on detecting Class-I and Class-II wormholes. We first
present Lemma 4, which follows [23, Lemma 2.1] and reveals
the parity property of the nonseparating loops.

Lemma 4: On surface , a cycle is nonseparating if there is
a cycle such that crosses odd times.

Theorem 5: All Class-I and Class-II wormholes are detected
and exactly located by our method.

Proof: Let be an arbitrary Class-I or Class-II wormhole.
According to Theorem 3, there exists a loop that passes
through . Since is a Class-I or Class-II wormhole, in-
creases one degenerated genus on the surface. For the degen-
erated genus, there exists a contractible simple closed curve at
one end of the genus that crosses one time, i.e., all Class-I
and Class-II wormholes can be effectively detected without false
negative. On the other hand, let be an arbitrary loop in . If
there exists a contractible loop in the -neighborhood of
crossing oddly, according to Lemma 4, must be nonsepa-
rating. is both nonseparating and contractible, so is con-
tinuously deformed and contractible to an endpoint of at least
one degenerated genus, never otherwise. When is sufficiently
small, it guarantees that there is only one endpoint inside .
Thus, the detection method accurately locates the Class-I and
Class-II wormholes.

Theorem 6: Let and be a pair of knit nonseparating loops.
There is at least one Class-III or Class-IV wormhole on and .

Proof: Suppose that neither nor passes a wormhole,
then and are also loops on the original surface without worm-
holes. Since and form a knit nonseparating loop pair, and
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Fig. 6. Wormhole detection in discrete environments. (a) Constructing shortest path tree and cut pairs. (b) Detecting independent nonseparating loops. (c) Locating
Class-I or Class-II wormholes. (d) Seeking knit nonseparating loop pairs. (e) Separating loops formed by Class-IV wormholes.

cross in odd times, thus and are both nonseparating according
to Lemma 4. On the other hand, since the original surface is ho-
motopic to a plane area with holes, according to Jordan Curve
Theorem [20], a loop in the original surface must separate the
original surface into at least two components. Hence, both and

are separating, which leads to contradiction and finishes this
proof.

Theorem 6 shows that our detection method is accurate
on Class-III and Class-IV wormholes, i.e., each pair of knit
nonseparating loops captures at least one Class-III or Class-IV
wormhole. We successively show by Theorems 7 and 8 that our
method detects all topologically detectable wormholes on the
original surface.

Theorem 7: The instant Class-IV wormhole is homotopy-
equivalent to a plain bridge on previous surface, and thus is un-
detectable with topological method.

Proof: As we characterize in Section IV-B, an instant
Class-IV wormhole adds a bridge on the same boundary. In the
sense of homotopy equivalence, it is indistinguishable with a
plain bridge on previous surface. Thus, a Class-IV wormhole is
undetectable with topological method.

Theorem 8: Given the original surface , and
the surface after wormhole attacks. Our method lo-
cates all Class-I and Class-II wormholes and detects at least

Class-III or Class-IV wormholes, while the rest of wormholes
are topologically undetectable.

Proof: First, according to Theorem 5, our method is able
to locate all Class-I and Class-II wormholes exactly. Second,
according to Theorem 6, we can detect at least Class-III or
Class-IV wormholes by detecting nonseparating loop pairs for
genus . Third, we consider an arbitrary order of inserting the
wormholes into the network. According to Theorems 1 and 2, an
increase of genus happens when and only when instant Class-III
wormholes (might be Class-IV to the original surface) are in-
serted. While the genus is increased by , there are
instant Class-IV wormholes inserted. According to Theorem 7,
their topological impacts on the network are indistinguishable
from bridges and thus topologically undetectable.

V. WORMHOLE DETECTION IN DISCRETE ENVIRONMENTS

We have characterized the impact of wormholes and de-
scribed the principles of wormhole detection under continuous
settings in Section IV. In this section, we present our approach
in discrete environments. The principle of this design follows
what we introduced in the continuous settings. When applied

in discrete environment, however, there exist substantial tech-
nical challenges in transforming the principles into concrete
protocols as follows.

1) It is nontrivial to test in discrete networks whether or not
a cycled path is contractible, especially with only connec-
tivity information among local neighborhoods.

2) Determining the crossing of two curves without any geo-
metric information is challenging. To calculate the accurate
crossing times of the two curves is even more difficult.

3) To seek the knit nonseparating loop pairs, we need to check
whether a candidate loop is one-sided or two-sided. Having
solely the connectivity information, to determine the two
sides of a path is also difficult.

We address the above challenges in this design, which in-
cludes three components: candidate loop selection, finding in-
dependent nonseparating loops, and seeking knit nonseparating
loop pairs. We illustrate the operations using the example shown
in Fig. 6, where we have all four different types of wormholes
residing in a network, denoted from 1 to 4.

A. Candidate Loop Selection

After the shortest-path tree is established, each node knows its
shortest paths to the root node. The neighboring nodes exchange
the information of their shortest paths. There are some pairs of
nodes connected with each other, but with their least common
ancestor far away. These nodes form cut pairs [24]. The cut pairs
witness the candidate loops. The two shortest paths from the cut
pair constitute a loop, and we qualify a candidate loop by set-
ting a threshold on the length of the loop. The threshold depends
on the expectation of the span of wormhole attacks, i.e., if we
aim to detect all wormholes across -hop span, we can set the
threshold to hops. Fig. 6(a) plots the detected cut pairs (big
nodes) and corresponding candidate loops (thin line paths). The
shortest-path tree is constructed by flooding from the big root
node in the center. As shown in this example, there are varia-
tions on the candidate loops, including misreported ones. Due
to the randomness and discreteness of the network deployment,
it is indeed difficult to obtain the cut locus accurately under dis-
crete settings. To tackle this problem, we perform all consecu-
tive operations on all candidate loops instead of selecting only
one loop for each cut path as in continuous principles.

B. Finding Independent Nonseparating Loops

Let denote a candidate loop. To test whether passes a
Class-I or Class-II wormhole, we verify whether or not is an
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independent nonseparating loop. As described in Section IV, we
need to find a small contractible circle that crosses one time.

We articulate the concept of contractible circle in discrete
settings. Given the communication graph , and two positive
integers and . For a vertex , let denote
the set of nodes within -hop distance to . . Let

. Given a vertex set , let
denote the vertex induced subgraph of from . Thus,

for an arbitrary node and , if
is a connected circular strip, we find a skeleton circle within

. Tracing such a skeleton circle is nontrivial. We con-
duct a restricted flooding from an arbitrary node in the strip
graph and build a shortest-path tree, We find an arbi-
trary cut pair among the leaf nodes and connect them into a loop,
similarly as what we do for constructing foregoing candidate
loops. We record it as . Apparently, when and are
sufficiently small, is contractible. Moreover, we say
that is a -hop contractible disk at if for any ,
there exists a skeleton circle within . A contractible
disk represents a set of network nodes embedded in a geometric
region without voids, and the skeleton circles on different levels
of the contractible disk are all contractible circles. In our later
example and simulations, we set , , and .

By creating a contractible disk, we explore the existence of
contractible circle around each node in the candi-
date loop . If there exists such a circle , there must
be intersection between and . In the discrete settings,
however, with only network connectivity information, it is yet
challenging to determine how many times crosses .
The two general curves might intersect with no common nodes
or even at multiple ambiguous intersection nodes. Fortunately,
we can restrictively transform our case into a relatively easier
one, as we only need to judge if crosses once or not.
We let and denote the sets of nodes within one-hop
distance to and , respectively. Let .
We check if there is only one single connected component in
or not and accordingly conclude if crosses only in
one time. We confirm that the candidate loop is an independent
nonseparating loop if our test shows that crosses one
time. Thus, there must be one endpoint of the wormhole is in-
cluded in . Fig. 6(b) illustrates that our approach works
on a candidate loop across a Class-I wormhole. The vertical
single line represents the candidate loop that passes through the
wormhole. The double-line paths are the detected contractible
circles that cross the candidate loop one time. The circles nodes
filled with white and gray are the one-hop neighborhoods of
the single-line and double-line paths, respectively. The dark dot
nodes show the intersection set of the two kinds of filled circle
nodes. By shrinking the contractible circles, we can eventually
locate the wormhole endpoints. As shown in Fig. 6(c), this ap-
proach successfully finds the contractible circles and locates the
two endpoints of the Class-I wormhole and one endpoint of the
Class-II wormhole. By tracing the traffic flow from one end, we
can successively locate the other end of the Class-II wormhole.

C. Seeking Knit Nonseparating Loop Pairs

To detect Class-III or Class-IV wormholes, we continue to
test whether a candidate loop passes through a Class-III or

Fig. 7. Distinguishing the two sides of loop �.

Class-IV wormhole. According to the principles in continuous
case, we seek the knit nonseparating loop pair containing .

The principle is simple, i.e., we conclude whether loop is
separating or nonseparating by checking whether is one-sided
or two-sided. This can be easily achieved in continuous settings
by flooding two colors from to its two sides and checking
whether the two colors ultimately meet with each other. In dis-
crete settings, however, it becomes difficult, as with only net-
work connectivity information, we cannot distinguish the two
sides of . We cannot locally determine a node is on which side
of solely by connectivity.

We propose corresponding countermeasures to address the
issue above. We first flood from loop and construct a shortest-
path tree rooted at . Each node is thus aware of its shortest
distance to . denotes the set of nodes within hops to
. Indeed, as Fig. 7 shows, we let nodes in keep silent,

separating the shortest-path tree into two parts corresponding
to the two sides of . We let each node within deliver
its specific color down to successive nodes. The color is rep-
resented by its node ID or a randomly generated number. The
color value is first flooded within . During flooding, the
smallest color value suppresses other color values. Then, along
the shortest-path tree, the dominant color value is delivered and
inherited by every node. In our implementations, we set
and . After the colors spread over the network, different
colors classify the nodes in the network into at least two types,
as Fig. 6(d) shows. We then verify whether the nodes with dif-
ferent colors neighbor to each other by exchanging the color
information among neighboring nodes. If there does exist such
a pair, loop is one-sided. There are two paths from the pair of
nodes to loop through the two components of different colors,
and accordingly the two paths can constitute a loop . and
compose a knit nonseparating loop pair, as the pair of single-line
and double-line loops found in Fig. 6(d). We then conclude that
there is at least a Class-III or Class-IV wormhole on or .

Fig. 6(e) displays a candidate loop formed by a Class-IV
wormhole. As such a Class-IV wormhole is topologically in-
distinguishable from a bridge across the void hole, the loop is
also tested to be separating. Our approach cannot detect such a
type of wormhole, nor can any other topological approaches.

VI. EVALUATION

We conduct extensive simulations under various situations
to evaluate the effectiveness of our approach. By varying
node placement, node density, as well as the number and
type of wormholes inside the network, we evaluate the rate
of successfully detected wormholes. We compare our fun-
damental-topology-deviations-based approach (denoted as
FTD) to the packing-number-based approach (denoted as PN)
proposed by Maheshwari et al. [9].
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Fig. 8. Detection rates against different node degrees and types of wormholes. (a) FTD under perturbed grid and random models. (b)–(d) FTD and PN approaches
detecting Class-I, Class-II, and Class-III wormholes, respectively.

A. Simulation Setup

The basic network setting is the same as the example shown
in Fig. 6, i.e., a 600 600 m square area with multiple holes
inside. We fill the area with a network of 3200 nodes. Nodes are
deployed using two models: random placement and perturbed
grid [9], [24]. We use the UDG model to build the network for
the convenience of comparison to the PN approach. We vary the
communication radius of sensors to yield average node degrees
from 6 to 18. By default, for each set of simulation, we con-
duct 100 runs with different node generations and report the av-
erage. We set wormholes be at least 8-hop span. Indeed, during
our simulation we test our approach on various network fields
of different shapes and obtain consistent results. We omit pre-
senting the results due to the space limitation.

B. Impact of Node Placement and Density

We first test the impact of different node placements and den-
sities on our approach. In each run, we randomly place one
wormhole inside the network. Fig. 8(a) plots the wormhole de-
tection rates of our approach under the two deployment models,
where the wormhole detection rate increases as the node den-
sity increases. For the perturbed grid model, the detection rate
rapidly rises up to nearly 100% when the average node degree
is above 8. The random deployment provides slightly lower but
still increasing detection rates. It approaches 100% when the av-
erage node degree increases to 18. Generally, the performance in
random node deployment is not as satisfactory as perturbed grid
due to more irregularities in the random deployment. When the
node density is small (average node degree 12), it is difficult
for one node to find discrete circles of sufficiently small sizes to
verify the nonseparating loops (pairs) because of the poor con-
nectivity.

C. Impact of Different Types of Wormholes

We compare our FTD approach with the PN approach. We
test the detection rates of the two approaches against Class-I,
Class-II, and Class-III wormholes under different node den-
sities. We place the nodes in the perturbed grid model and
randomly generate one wormhole in the network. For the
packing-number-based approach, we set the forbidden param-
eter , which has been shown effective for most cases
in [9]. The results are displayed in Fig. 8(b)–(d). For Class-I
wormholes, both our approach and the packing-number-based
approach can achieve nearly 100% detection rate even under
low node density. For the cases of Class-II and Class-III worm-
holes, the packing-number-based approach bears relatively low

detection rate, while our approach rapidly approaches 100%
detection rate when the node degree rises above 9. This is
mainly because in the packing-number-based approach, the
probability of the appearance of forbidden structures around
Class-II and Class-III wormholes reduces dramatically when
wormhole endpoints locate on network boundaries. Instead, our
approach successfully captures the global impact of Class-II
and Class-III wormholes by detecting nonseparating loops.
Furthermore, an interesting behavior can be observed from
Fig. 8(d). The detection rate of Class III in our approach is
independent of the average node degree. This is because the
partner loops in the detection of Class-III wormholes are much
longer than the locally contractible cycles in the case of Class I
and II. These long cycles can still form even when the average
degree is relatively low.

VII. CONCLUSION

Wormhole attack is a severe threat to wireless ad hoc and
sensor networks. Most existing countermeasures either require
specialized hardware devices or have strong assumptions on the
network, leading to low applicability. In this paper, we funda-
mentally analyze the wormhole issue by topology methodology
and by observing the inevitable topology deviations introduced
by wormholes. We generalize the definition of wormholes, clas-
sify the wormholes according their impacts on the network,
and propose a topological approach. By detecting nonseparating
loops (pairs), our approach can detect and locate various worm-
holes and relies solely on topological information of the net-
work. To the best of our knowledge, we make the first attempt
toward a purely topological approach to detect wormholes dis-
tributedly without any rigorous requirements and assumptions.
Our approach achieves superior performance and applicability
with the least limitations.
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