1948

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Path Reconstruction in Dynamic Wireless Sensor
Networks Using Compressive Sensing

Zhidan Liu, Zhenjiang Li, Member, IEEE, Mo Li, Member, IEEE, Wei Xing, and Dongming Lu

Abstract—This paper presents CSPR, a compressive-sensing-
based approach for path reconstruction in wireless sensor net-
works. By viewing the whole network as a path representation
space, an arbitrary routing path can be represented by a path
vector in the space. As path length is usually much smaller than
the network size, such path vectors are sparse, i.e., the majority
of elements are zeros. By encoding sparse path representation
into packets, the path vector (and thus the represented routing
path) can be recovered from a small amount of packets using
compressive sensing technique. CSPR formalizes the sparse path
representation and enables accurate and efficient per-packet
path reconstruction. CSPR is invulnerable to network dynamics
and lossy links due to its distinct design. A set of optimization
techniques is further proposed to improve the design. We eval-
uate CSPR in both testbed-based experiments and large-scale
trace-driven simulations. Evaluation results show that CSPR
achieves high path recovery accuracy (i.e., 100% and 96% in
experiments and simulations, respectively) and outperforms the
state-of-the-art approaches in various network settings.

Index Terms—Bloom filter, compressive sensing, packet path
reconstruction, wireless sensor networks.

I. INTRODUCTION

HE PER-PACKET routing path serves as the meta-in-

formation for understanding detailed wireless sensor net-
works (WSNs) behaviors in many network maintenance and
diagnosis situations, e.g., routing dynamics [38], detection on
routing holes [13] or wormholes [9] or even per-hop per-packet
transmission delay [15], network diagnosis [23], [28], [33], etc.
Reconstructing per-packet routing path information, however,
has been known to be nontrivial. WSNs are self-organized and

Manuscript received June 16, 2014; revised January 13, 2015; accepted May
17,2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A.
Markopoulou. Date of publication June 09, 2015; date of current version Au-
gust 16, 2016. This work was supported in part by Singapore MOE AcRF Tier
2 Grant MOE2012-T2-1-070, NTU Nanyang Assistant Professorship (NAP)
Grant M4080738.020, NSFC Grant No. 61303233, the National High Tech-
nology Research and Development Program of China (863) under Grant No.
2012AA101701, the National Key Research & Development Program under
Grant No. 2013BAK01B04, and the Project of Innovative Team of Digital Cul-
tural Media Technology of Zhejiang Province under Grant No. 2010R50040.

Z. Liu is with the School of Computer Engineering, Nanyang Technological
University, Singapore 639798, Singapore, and also with the College of Com-
puter Science and Technology, Zhejiang University, Hangzhou 310027, China.
(e-mail: liuzhidan@ntu.edu.sg).

Z. Li and M. Li are with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798, Singapore (e-mail: 1zjiang@ntu.
edu.sg; limo@ntu.edu.sg).

W. Xing and D. Lu are with the College of Computer Science and Tech-
nology, Zhejiang University, Hangzhou 310027, China (e-mail: wxing@zju.
edu.cn; ldm@zju.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2015.2435805

usually deployed in dynamic environments. The underlying net-
work topology constantly changes, and no fixed routing path can
be expected for each node. A straightforward solution to reveal
the packet path is to record the complete path during packet for-
warding, e.g., storing the ID sequence of all relay nodes, in each
packet. The introduced overhead linearly grows with the path
length, far from scalable.

There have been many efforts made to address the per-packet
path reconstruction problem in WSNs. The method that iden-
tifies packet paths via hash values triggers disastrous compu-
tation overhead [25]. Some methods reconstruct path informa-
tion by leveraging interpacket correlation in sufficiently stable
and reliable networks [16], [20]. However, according to our
investigation on the practical packet trace from CitySee [29],
a real-deployed and large-scale WSN, we observe nonnegli-
gible topology variation (e.g., up to 28% packets experienced
parent changes) and high packet loss (e.g., up to 55% packets
lost for some nodes) all the time. Both topology instability and
packet loss significantly deteriorate existing path reconstruction
methods in practical WSNs. To cope with above issues, we at-
tack the path reconstruction problem from a new perspective,
which requires no interpacket correlations and thus makes the
solution insensitive to network dynamics and lossy links.

The key insight of our design is as follows. The length of
a routing path is usually much smaller than the network size.
As a concrete example, the maximum path length reported in
CitySee [29] is only 20 hops in comparison to its network size
of 1200 nodes. Therefore, we can construct a path representa-
tion space, the number of whose dimensions equals the total
number of nodes in the network. In such a representation space,
an arbitrary routing path can be represented by a path vector,
where each element corresponds to a node in the network. The
path vector sets the hop numbers for nodes on the path and zeros
for those not involved in the path. As the path length is much
smaller than the network size, such path vectors are thus sparse,
i.e., the majority of elements are zeros. The path reconstruc-
tion becomes a problem of unveiling all existing path vectors
hidden in the representation space. If all nonzero elements of
a path vector can be encoded (with few bytes) into the packets
forwarded along the path, we can recover the path vector (and
thus the represented routing path) based on a small amount of
packets using compressive sensing technique [5], [12].

In this paper, we propose a Compressive-Sensing-based
Path Reconstruction method, CSPR, which formalizes the
sparse path representation and leverages compressive sensing
to recover routing paths. CSPR lets intermediate nodes briefly
annotate the transmitted packets and classifies packets traveling
along different paths into different groups. For a particular
path, the forwarded packets encode independent observations
and CSPR performs compressive sensing to recover the path

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

when a certain amount of packets (and the annotations) is
collected. The path reconstruction by CSPR requires no inter-
packet correlations and utilizes only a small number of received
packets. CSPR is thus invulnerable to topology dynamics and
lossy links. On the protocol level, CSPR introduces only small
and fixed overhead in annotating each packet, which could
be optimized accordingly for practical WSNs (e.g., 8 B per
packet for a network with 245 nodes). In addition to the basic
design, we further propose a set of optimization techniques
to gradually shrink the representation space and reduce the
sparsity of unrecovered path vectors. The numbers of packets
needed for remaining path reconstructions are lowered, and
processing is thus accelerated. To examine the performance of
CSPR, we first evaluate our method using a 29 TelosB mote
testbed. The experiment results validate the feasibility and
applicability of CSPR in practice. We further conduct extensive
and large-scale trace-driven simulations to examine the effi-
ciency and salability of CSPR. Compared to the state-of-the-art
methods, CSPR achieves higher path recovery accuracy (i.e.,
100% and 96% for experiments and simulations, respectively)
with comparable overhead (8 extra bytes per packet).

The rest of this paper is organized as follows. The path recon-
struction problem and the motivation of our design are presented
in Section II. The design of CSPR is detailed in Section III. In
Section IV, we evaluate CSPR through testbed experiments and
trace-driven simulations. We review related works in Section V.
Section VI concludes this paper.

II. PROBLEM STATEMENT AND MOTIVATION

A. Path Reconstruction Problem

A WSN consists of a number of sensor nodes and a sink. All
sensor nodes generate and relay packets to the sink. To collect
packets, the sink builds a routing structure, e.g., data collection
tree [17], [22], information potential [19], [21], etc., covering all
the sensor nodes in the network. After generating one packet, the
source node forwards it to its parent node, and the packet will be
further forwarded until it reaches the sink. Due to the network
dynamics, each node will periodically search for the best parent
node. The routing path from each node to the sink thus may
change. At the sink, a path reconstruction method is desired to
recover the path each packet traveled. One packet path is an ID
sequence from the source of the packet to the sink, including
IDs of all intermediate nodes relaying this packet and their hop
numbers as well.

There have been many efforts made to address the path re-
construction problem (as reviewed in Section V). Two state-
of-the-art methods, MNT [20] and Pathfinder [16], have been
recently proposed. MNT [20] reconstructs per-packet path by
exploiting interpacket correlation, i.e., a relayed packet and its
adjacent packets locally generated at any node ¢ are usually for-
warded to the same next hop. Such local packets serve as an-
chors of the relayed packet at node i. As the first-hop receiver
is recorded in packets, the path of a packet can be obtained
by concatenating the first-hop receivers of all its anchors. Im-
proving on MNT, Pathfinder [16] tolerates certain inconsistence
in interpacket correlation via explicitly recording inconsistence
in packets. The reconstruction failure occurs once the inconsis-
tence exceeds the tolerance capacity. To accurately locate an-
chors, Pathfinder further imposes the packet generation rate of
each node to be identical and fixed. Both MNT and Pathfinder

1949

require stable network topology such that interpacket correla-
tion can be captured. The practical WSNs, however, behave dy-
namically and the wireless links are far from stable [11], [18]
(as we will demonstrate in Section II-B). Both network dy-
namic and packet loss have strong impacts on the anchor iden-
tifications, and thus deteriorate the performances of MNT and
Pathfinder.

B. How Packet Routing Behaves in Practical WSNs

We investigate the packet trace from a real-deployed and
large-scale WSN CitySee [29], and discuss how practical
routing behaviors impact the path reconstruction performances
of the state-of-the-art methods as well. The CitySee, deployed
in Wuxi city, China, contains more than 1200 sensor nodes
for monitoring urban environmental factors, including carbon
dioxide, temperature, humidity, light, etc. Sensor nodes gen-
erate data every 10 min, encapsulate data into a single packet,
and transmit packets to the sink with CTP [17] in a multihop
manner. Each packet possesses a default CTP packet header
including following common fields: source address, ID of the
node generating this packet; sequence number, order of the
packet generated from the source; first-hop receiver, parent
node ID of the packet's source; and hop count, length of path
traveled by the packet. Each packet further records the first
10-hop node IDs for future analysis. The packet trace from a
subnetwork of 245 nodes with a collection period of one week
is available for our study. Such partial network covers about
16 km? area with the average and maximum routing path length
as 7 hops and 12 hops, respectively.

With CitySee packet trace, we examine the topology change
and packet loss, which are most relevant to the stability of
WSNs [6]. For each node, one topology change is indicated
by the first-hop receiver (i.e., parent) difference between
two consecutively generated local packets. The topology
change rate of a network is defined as the average of ratios
£ oL DKt Wil sobo- CIANES % 100% for each node within
certain time duration, where the numerator indicates the total
parent changes of each node in the time window. Similarly, for
each node, one packet loss is indicated by a sequence number
missing. The packet loss rate of a network is further defined as
the average of ratios (1 — = Zi(:sf ef(lgsczsge‘t‘(;efeceive) x 100%
for each node within certain time duration.

Topology change rate indicates the topology stability of a
network, which reflects the validity of the interpacket cor-
relation assumption made in existing path reconstruction
methods [16], [20]. Fig. 1(a) depicts the topology change rate
in CitySee with 2-h time window of measurement. From the
figure, we observe that the average and maximum topology
change rates at all time windows are about 12% and 48%,
respectively. In Fig. 2, we summarize the CDF of topology
change rates of all nodes during one week. For most nodes,
the rate is as high as 10% and the maximum rate reaches up to
28%. Due to the instable topology, each node would transmit
packets to the sink via different paths. In Fig. 3(a), we plot
the number of routing paths formed in the packet trace as time
goes by. The average number of paths starting from a node
persistently increases and finally on average each node has 76
paths. All this evidence demonstrate that network topology
suffers from severe instability and the interpacket correlation
may not be well validated in practice. In Section IV, we have

1950

Rate (%)

Rate (%)

Time (unit: 2 hours

Fig. 1. Average (a) topology change rate and (b) packet loss rate of all nodes
at each time window.

1.0

0.9

0.8

0.7

0.6

05

CDF

0.4
03 —— Topology change
02 - = = Packet loss

0.1

0.0

0 10 20 30 40 50 60
Rate (%)

Fig. 2. CDF of topology change rates and packet loss rates of all nodes in the
CitySee packet trace.

14 @)

120 ‘ —o— Average # of routing paths ’

of paths

50 60
Time (unit: 2 hour)

45 (b)
‘ [Ratio of path groups ‘
24.0%

70 75

g
14.3% 17'2%20.4/0

19 2% 6.9% 4.8%
2.4% 1 == 07%
3 > 1)

SIS R
o W W o

Percent (%)
S

of packets in path group

Fig. 3. (a) Average number of paths for each node. (b) Distribution of packet
volumes for all groups.

implemented both MNT and Pathfinder. By analyzing their
detailed executions, we find that the topology dynamics could
solely cause about 10% and 1% of anchor misidentifications,
which directly lead to path reconstruction failures. Pathfinder
outperforms MNT at the cost of explicitly recording certain
topology changes in each packet.

Packet loss rate reflects the reliability of packet receptions.
Packet losses will hide the interpacket correlation, e.g., anchor
availability, and deteriorate performances of methods relying
on such correlation. Fig. 1(b) depicts the packet loss rate in the
packet trace, with 2-h time window. From the figure, we see that
the packet loss rate changes rapidly with the average ranging
from 17% to 69%. In Fig. 2, we summarize the CDF of packet
loss rates of all nodes during one week. The distribution mainly

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 4. (a) Wireless sensor network model. Source node 7 transmits 20 packets
to the sink via 3 different routing paths, e.g., 5 packets on path P;. (b) Sparse
representations of the three routing paths in the whole network space.

concentrates in the range between 15% and 35%, with the max-
imum rate as high as 55%. By analyzing the detailed executions
of MNT and Pathfinder, we find that with such a high packet loss
rate, about 49% and 35% packets fail to identify anchors, which
directly result in path reconstruction failure for those packets.
With the joint impacts of topology dynamics and packet
losses, we find that in the large-scale and dynamic WSN
CitySee, 59% and 36% packet paths might not be success-
fully reconstructed by the state-of-the-art methods MNT and
Pathfinder, respectively. This motivates us to explore a solution
insensitive to both network dynamics and lossy links.

C. Path Reconstruction From Sparse Path Representation

Sparse Representation of Routing Paths: Since sensory data
in WSNs are usually collected with a direct acyclic graph
(DAG) routing structure (e.g., data collection tree), the path
length is thus in the order of O(log(IN)), where N is the total
number of nodes in the network. According to the statistical re-
sults of all paths formed in CitySee packet trace, the path length
ranges between 2 and 12 hops, which are much smaller than the
network size 245. We can construct a path representation space
N. The dimensionality of N equals the total number of nodes in
the network, and each dimension corresponds to one node. In
such a representation space, any routing path can be presented
by a path vector. According to whether a node is involved in the
routing path, the path vector sets either hop number or zero for
its corresponding element. As the path length is much smaller
than the network size, the path vector is thus sparse, i.e., the
majority of elements in the vector are zeros.

Fig. 4 illustrates the sparse path representation with a net-
work containing 10 nodes. We construct the path representation
Space N = [n17 n2,ng, N4, N5, Ng, N7, Ng, Ng, nlO}T iHCIUding
all nodes. An arbitrary in-network path can be represented by a
path vector in N. For example, path P; is represented as s; =
13,0,2,0,0,1,0,0,0,0]”. Node 7 is the source node and could
be known from the packet header. Hence, the element n7 is not
considered in sq and thus assigned as 0. As nodes 6, 3, and 1
serve as the first, second, and third hop relay, respectively, in
path Py, thus ng = 1,n3 = 2 and ny = 3. All other elements
irrelevant to P are zeros in s1. The sparsity of this path vector
is 3 (out of 10). Other path vectors, e.g., s2 and sg, can be sim-
ilarly constructed.

Compressive-Sensing-Based Path Reconstruction: Based on
sparse path representation, the path reconstruction thus becomes
a problem of unveiling all existing path vectors hidden in the
path representation space N. Packets from the same source may

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

travel different paths to the sink, while the paths implicitly clas-
sify packets into different path groups, i.e., all packets in one
group travel exactly the same path. After the paths of all path
groups get reconstructed, the path of each packet is obtained as
well.

For the path vector of a routing path, if its nonzero elements
can be encoded into each packet forwarded along the path, it
is viable to recover the vector (and thus the represented path)
based on a small amount of packets using compressive sensing
[51, [12]. In particular, for any path vector s in space N with
sparsity k, where & < N = |N|, the compressive sensing
theory states that M, instead of NV, independent equations are
sufficient to solve the N unknowns in s, where M <« N. The
M independent equations can be acquired by projecting s to a
measurement matrix ® : Y = $s, where Y is an M -dimension
vector and @ is an M x N matrix. If ® satisfies the Restricted
Isometry Property [4], s can be exactly recovered by solving
following /1 -minimization problem:

§ = argmingc pn [[sl;, st Y = ®s
when M > ck log(%), where ¢ is a small positive constant [4].

The above compressive-sensing-based approach makes path
reconstruction for each path group independent, and can re-
cover the path for a group of packets once sufficient packet
are accumulated. As a result, this approach requires no inter-
packet correlation, which makes itself inherently invulnerable
to network dynamics and lossy links. On the other hand, once a
path is recovered, the path for all future packets residing in the
same group becomes immediately available, which avoids re-
peatedly triggering path reconstruction for each received packet
and largely reduces the computation overhead.

Design Challenges: Translating the idea of compres-
sive-sensing-based per-packet path reconstruction to a practical
system, however, encounters a set of challenges as follows.

1) Accurate Packet Classification: Packet classification into
each path group must be accurate. Fig. 3(a) plots the average
number of paths (each path one path group) formed in the packet
trace as more and more packets are received by the sink. Ac-
cording to the statistics, we observe significant differences ex-
isting in the number of paths for each node, e.g., the maximum
number of paths of some node could even reach 199. It is vital
to distinguish each individual path and classify the packets into
the right group. Packet misclassification will lead to path recon-
struction error for one group. Therefore, packet classification
must have high accuracy.

2) Lightweight Per-Packet Annotation: To enable the
compressive-sensing-based path reconstruction, packets need
to carry encoded information for all nonzero elements of the
path vectors representing their traveling paths. In particular,
when one packet is relayed by an intermediate node, the node
needs to annotate its hop number along the path into the packet
header. As a result, packet header is updated hop by hop. The
annotation overhead must be small. In particular, the anno-
tation field in the packet header should be small in size and
remain constant (not increase with the path length). In addition,
updating should be performed in a distributed manner without
introducing any centralized control.

3) Short Per-Packet Path Recovery Delay: From Fig. 3(b),
we observe that the packet volumes for all path groups within
one week are highly heterogenous. About 50% path groups

1951

sAddr | pLen| bFIt I aMsr |+ Payload
N Packet classifier
=4 < sAddr, pLen, bFIt >

Compressive sensing
based path
reconstruction

“ SEQ

Path group g

Flag
Path info.

Received
packets

Fig. 5. System architecture of CSPR.

include fewer than 5 packets, while some path groups (about
5.5%) contain more than 50 packets. To perform compres-
sive-sensing-based path reconstruction for one path group, the
number of packets (one annotation as one measurement for
each packet) accumulated in this group should be at least M to
ensure a good recovery quality. Some path groups, however,
cannot accumulate sufficient packets even after a long time. As
practical requirement, per-packet path recovery delay should
not be excessively long.

III. DESIGN OF CSPR

CSPR consists of two parts, the in-network part for path in-
formation encoding and the server part for per-packet path re-
construction. The system architecture of CSPR is depicted in
Fig. 5. We will present the system overview first and then detail
each component.

A. CSPR Overview

Several fields in the packet header are used by CSPR to carry
packet information, as depicted by Fig. 5. SEQ is the packet
sequence number. sAddr is source address of the packet. pLen
records the path length. bFIt is a Bloom filter to space-efficiently
record the IDs and corresponding hop count information of all
relay nodes. aMsr stores the encoded measurement along the
path. All the five fields are initialized at the source node. In
particular, SEQ and sAddr keep unchanged after initialization,
whereas pLen, bFlt, and aMsr are updated at each intermediate
hop. Note that SEQ, sAddr, and pLen can be found in the default
packet header, e.g., CTP packet header, and only two fields, bFIt
and aMsr, are additionally introduced by CSPR. The extra over-
head to each packet is thus slight, e.g., 6 B of bFlt and 2 B of
aMsr for a network with 245 nodes. We detail the in-network
updating of packet header in Section III-B.

CSPR adopts a 3-tuple key, (sAddr, pLen, bFIt), to identify
the path of a packet. For all received packets, CSPR first distin-
guishes their paths according to sAddr, and then differentiates
those from the same source based on pLen. Finally, bFlt is used
to distinguish paths owning the same sAddr and pLen. If two
packets have the same 3-tuple key, they are considered to travel
the same path and will be classified into the same path group.
At the sink, CSPR maintains a database, where each entry is
indexed via the 3-tuple key and corresponds to a unique path
group. When a packet is received, CSPR extracts the 3-tuple
key from the packet header and looks for a matched entry in
the database. If the matched entry has already recovered the
path, the path for the packet becomes immediately available. If
an entry is matched yet the path is not ready, CSPR launches
path reconstruction when sufficient packets are accumulated.
If no entry matched, CSPR creates an entry for the new path
group indexed by the 3-tuple key of the packet. We detail the

1952

compressive-sensing-based path reconstruction component in
Section III-C.

As improvements on the basic design, a set of optimization
techniques is proposed to gradually shrink the path representa-
tion space and reduce the sparsity of unrecovered path vectors.
The number of packets needed by compressive sensing is ac-
cordingly lowered such that the remaining path reconstructions
are accelerated. In addition, CSPR can launch a remedy scheme
if some path groups fail to recover their paths after an excessive
long delay. We detail those components in Section III-D.

B. In-Network Path Information Encoding

In this section, we introduce the in-network updating of the
last three fields pLen, bFIt, and aMsr in turn.

Updating of pLen: The pLen field of each packet is initialized
to 0 by the source and increased by one at each intermediate hop
along the path. At each intermediate hop, pLen is updated prior
to both bFIt and aMsr as the updating of the latter two fields
relies on the new pLen value. When a packet arrives at the sink,
we can know the packet path length through the bFlt field, while
we cannot infer the hop count information for each intermediate
node along the path relying on this filed at the server side.

Updating of bFIt: Bloom filter is an L-bit array associated
with I independent hash functions, where L and H are two
parameters to be determined (detailed in Section III-C). The
bFIt field of each packet accommodates an L-bit array, and
sensor nodes use the same set of H independent hash func-
tions f;(-),i = 1,2,..., H, to update bFlt. Different arrays
represent different path information. Initially, all L bits in the
bFIt field of a packet header are set to 0. At each intermediate
hop, the node compresses its existence into the bFlt field as fol-
lows. H hash values v; = f;(d x h) € {0,1,...,L —1},i =
1,..., H, are first obtained by feeding the product of node ID
d and hop count A in the pLen field to the H hash functions.
Then, the v; bits of the bFIt field are set to 1 by that relay node,
i=1,2,...,H.

Updating of aMsr: The aMsr field in each packet is also ini-
tialized as 0 by the source and updated along the path. At each
intermediate hop, the node encodes its hop number along the
path in aMsr. In particular, the node multiplies the updated pLen
value with a random coefficient and adds the product with cur-
rent aMsr value. We design such a field for the purpose of re-
covering sparse path vector via compressive sensing technique.

The reason that CSPR adopts both aMsr and bFIt to encode
the path information is because: if CSPR only uses aMsr, it
cannot group packets from the same routing path, and if CSPR
encodes the path information with bFlt merely (even with a
larger size), it needs the topology information to enumerate all
possible intermediate nodes, which results in enormous com-
putation overhead and plenty of false positive results. By com-
bining aMsr and bFIt, CSPR can accurately classify packets and
reconstruct their corresponding paths.

When CSPR later recovers the path for a set of received
packets in one path group, it solves equation Y = @s to obtain
s using compressive sensing technique. The path vector s is
a column vector with N elements. Each element represents
one node in the path representation space N. If a node is in-
cluded in the path represented by s, the corresponding element
indicates its hop number; otherwise, element is zero. In the
equation, each element in Y is the final aMsr value of one

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

{SEQ=3 i Vpl;cn = 1 pLen = 2‘ pLen = 3‘ pLen = 4

(SAAr=7 LM 4= 1xD,[3]] | aMsr+=2xD,(3]; | aMsr 4= 3xDy[3]} | aMsr+=4xD,[3]; | 3-tuple key from |
(PLen=0 1 1y —0v=6 | w=3m=2 | vi=Lv,=4 vi=3,v,=7 P:=T,4,0xDF> |
(aMsr=0 ppie=0xdl | bFlt=0x4D | bFIt = 0x5F bFlt = 0xDF :

| bFIt=0x00 |

Fig. 6. Path information encoding process for a packet p on path Fs in Fig. 4.
CSPR finally can extract a 3-tuple key from packet p at the sink.

packet and the corresponding row in ¢ can be represented by
¢ = a1, ag, ..., an], where a;; means that if node j relays the
packet, a; will be the coefficient multiplied with pLen value,
7=12,...,N. The product of & and s essentially replays the
updating process of aMsr along the path.

Before the reconstruction of s, we are not aware of which o
finally participates in the aMsr updating. We have to provide
complete o; in ¢ for the compressive sensing recovery. To avoid
explicitly acquiring such information from each node in the net-
work, we introduce a dictionary-based strategy working in a
fully distributed manner. Each node ¢ is configured with a coeffi-
cient dictionary D;, stored in the RAM. To update the aMsr field
for a packet, node ¢ multiplies the updated pLen value with the
nth coefficient in D;, where n = (SEQmod|D;|) and |D;| is the
size of D;. Each D; is made up by Gaussian random numbers,
and the CSPR server is aware of the dictionaries of all nodes
in the network. Coefficients in all dictionaries are generated in-
dependently. As a result, different nodes have different dictio-
nary elements. In our current design, each coefficient occupies
2 B and each dictionary contains 100 independent coefficients.
The 200-B storage overhead accounts for only 2% storage oc-
cupancy to commercial sensor motes, e.g., TelosB with 10 kB
RAM [1]. We could synchronize the generation of random num-
bers between nodes and server via global seed [26], while at the
cost of reducing coefficient randomness.

Fig. 6 illustrates the path information encoding for a packet p
on path P; in Fig. 4. For ease of illustration, we simply set L = 8
and H = 2 for the Bloom filter. Source node 7 generates packet
p with SEQ equaling 3 and initializes sAddr, pLen, bFIt, and
aMsr to 7, 0, 0x00, and 0, respectively. At each hop, pLen, aMsr
and bFIt are updated. For instance, at node 5, pLen is increased
from 2 to 3. Two hash values are ©1 = 1 and v = 4(vy, 15 €
{0,1,...,7}). The bFlt is thus updated by setting the first and
fourth bits to 1. The aMsr is updated by adding the product of the
updated pLen (i.e., 3) and the third coefficient in D5 to current
aMsr value.

C. Compressive-Sensing-Based Path Reconstruction

In this section, we first present the packet classification mech-
anism in CSPR, and then detail the compressive-sensing-based
path reconstruction with path verification scheme to ensure the
reconstruction correctness.

Packet Classification: For each received packet, CSPR
extracts the 3-tuple key, (sAddr, pLen, bFlt), from the packet
header and then classifies it into a path group. A path group
is designed to contain packets traveling the same path. At the
sink, CSPR manages all path groups with a database. One
database entry is indexed via the 3-tuple key and corresponds
to a unique path group. Each entry is further allocated with a
piece of buffer to accommodate the packets belonging to this
group. An entry also has an indicator Flag to tell whether the
path gets recovered. When a packet is received by sink, CSPR

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

0.09

0.0788
0.081 I
False positive rate
2 006l
° 0.0476
2 I
2 004f
o
Q
@
& o002}
0.0061
0.003
8E-4 3E-4
0.00
16 24 32 40 48 56
(H=1) (H=1) (H=2) (H=2) (H=3) (H=3)

Size of bloom filter L

Fig. 7. False positive rates under various combination setting of L and H.

extracts the key from the packet header and looks for a matched
entry. If a matched entry exists, the packet is inserted into the
allocated buffer. Furthermore, in case the indicator Flag is
true, CSPR checks whether the recovered path of this group is
valid for the packet through the path verification component
(as described later). When the Flag is false, however, CSPR
will recover the path if the amount of packets accumulated in
the group is sufficient (the number will be given later). On the
other hand, if no entry matched, CSPR creates an entry for this
new path group, initializes Flag as false, and inserts the packet
into the buffer.

The packet classification using the 3-tuple key might lead
to misclassification since the comparison result between two
Bloom filers could be false positive, i.c., different paths possess
the same L-bit array. However, with a proper parameters L and
H settings of the Bloom filter, misclassification rate could be
low. The setting of L trades off between packet overhead and
classification accuracy. A lager L leads to a lower false posi-
tive probability yet more overhead to each packet. According
to Bloom filter theories [3], [36], given the false positive rate
p to tolerate and the routing path length %, the optimal Bloom
filter size L will be about O(—]glﬁlg)), with the corresponding
number of hash functions I being _% In 2|. Therefore, the key
of the Bloom filter configuration is to set the parameter k. The
optimal setting can achieve the best tradeoff between the over-
head and the false positive rate. In principle, we prefer to set &
as the maximum routing path length, which can achieve a low
false positive rate. For the CitySee packet trace, the maximum
path length (excluding the source and destination) observed in
the trace is 10. Fig. 7 depicts the false positive rate when L
varies from 16 to 56, where we set ¥ = 10 to determine H,
for the CitySee packet trace. From the figure, we see that the
false positive rate is generally not high, i.e., <0.09. In partic-
ular, when L is larger than 40, the false positive rate is smaller
than 0.001. Although the above setting can achieve a low false
positive rate using a small number of hash functions, the max-
imum path length information is usually unknown in a practical
system before the deployment. To address this issue, in CSPR,
we propose to set k as [log(N)], where N is the total number of
nodes in the network. The network size /N usually can be deter-
mined before the deployment. We further test the performance
of this practical approach. Since the CitySee packet trace con-
tains 245 nodes in total, we set k as [log(245)] ~ 8, and thus
the optimal H is | £ In 2|. From the result, we find that the false
positive rates are small in general as well. The packet misclas-
sification cases can be negligible as long as we configure the

1953

Bloom filter carefully. With a balance between the classifica-
tion accuracy and packet overhead, we configure Bloom filter
using k& = [log(N)] and p = 0.15% in CSPR, e.g., L = 48 for
the CitySee trace.

As long as sufficient packets, truly belonging to the same path
group, are received, our path reconstruction method can still re-
cover the path even if certain misclassified packets are mixed in
the reconstruction. Moreover, after a routing path is recovered,
a path verification component is used to further verify the recon-
struction correctness, which can also eliminate all misclassified
packets from the group as well. As a result, CSPR is not vulner-
able to packet misclassification, while accurate classification is
still preferred as high accuracy ensures that more paths could be
recovered with shorter latency.

Path Reconstruction: Based on the encoded measurements
in received packets, CSPR recovers the path for a path group
using compressive sensing technique. Concretely, for one path
group, CSPR solves Y = ®s to obtain the path vector s for
path recovery. Each element in Y, denoted as y;, is the aMsr
value of a received packet i. The corresponding row in & is
represented by ¢; = [a;1,i2,...,0; n], where o ; is the
(SEQ; mod|D;|)th coefficient in the coefficient dictionary D;
of node j and SEQ; is the sequence number of packet i. If the
elements in s are known, the product of ¢; and s replays the
updating process of the aMsr field along the path of packet ¢.
Therefore, y; = ¢;s. For the path reconstruction problem, both
1); and ¢; are known while the N elements in s are unknowns. In
principle, NV independent equations are needed to obtain s, and
each equation y; = @;s corresponds to one received packet.

Since path vector s is sparse, it can be recovered using A
rather than N equations by leveraging compressive sensing.
Therefore, as long as M packets are accumulated by one path
group, the vector s can be recovered. We use the aMsr values
from M packets to form an M -dimension column vector Y, i.e.,
Y = [y1,¥2,---,yn]T. For each packet i out of M packets,
we further use its sequence number SEQ); to select coefficients
from coefficient dictionaries of all nodes in the path represen-

tation space N to construct ¢; = [a; 1,;2,..., ;. n]. All ¢;
together form an M x NN matrix
o1 a1 02 a1 N
o2 Q21 Qg2 =+ Q2N
D = = . .) . . (D
O apl M2 QN

Since all coefficients in ® follow the Gaussian distribution, the
measurement matrix @ satisfies the RIP condition [26]. In ad-
dition, if the number of packets in the path group is sufficient,
at least ck log(%), we can apply the compressive sensing tech-
nique to recover the path vector s. A variety of compressive
sensing solvers can be used to obtain s. However, most of them
provide no confidence for the reconstruction quality. As a re-
sult, s might not be correctly reconstructed. In CSPR, since the
sparsity of s, i.e., path length indicated by the pLen field, is
known prior to the path reconstruction, we adopt a more ad-
vanced solver CoSaMP [31] that requires the vector sparsity as
input. If CoSaMP outputs a recovered result, the result is correct
with a high probability. Otherwise, CoSaMP outputs “Fail” in-
stead. Furthermore, CoSaMP can tolerate certain noises mixed
inY', and the path vector can be recovered even if some misclas-
sified packets are included. In particular, CoSaMP could recover

1954

s if the number of correctly classified packets is greater than
M = ck log(%) when ¢ = 1.5 according to recent study [5].

In CSPR, after a packet is received, if the path group this
packet belongs to has not recovered its path yet, the server
checks whether the number of packets in the group exceeds M.
The path reconstruction will be performed if the threshold is
reached. If CoSaMP returns “Fail,” more packets are expected.
If CoSaMP returns a valid result, CSPR executes path verifica-
tion component to further ensure its correctness.

Path Verification: Given a recovered path and a packet, the
path verification component verifies whether the recovered path
is valid for the packet via path vector s of the recovered path and
aMsr value of the packet. More precisely, for a packet with se-
quence number SEQ, we calculate the product of ¢ and s, where
¢ = [a1,a9,...,an] and «; in ¢ is the (SEQmod|D;|)th co-
efficient in D, 5 = 1,2,..., N. As coefficients are randomly
Gaussian, it is highly improbable for two packets traveling two
different paths yet leading to the same aMsr value. Therefore,
if ¢ - s is equal to the aMsr value of the packet, the recovered
path is valid for this packet.

When a path p is newly reconstructed, this component is
executed to verify the correctness of path p for a path group.
It is also used to eliminate all misclassified packets due to
Bloom filter collision. If path p is only valid for the minority
of packets in the group (e.g., < 20%), the path recovery is
considered to be failed, e.g., an incorrect output from CoSaMP.
The path reconstruction will be performed after more packets
are received. Otherwise, path p is viewed as the correct path,
and the corresponding Flag of this group is changed to be true.
However, we exclude all packets failed in the aMsr check from
current group and form a new group, with Flag as false, for
those packets. Since the new group has the same 3-tuple key
with current group, we introduce gldx as the secondary key, an
auto-increment key, to further distinguish entries in database
with the same 3-tuple key.

The recovered paths will benefit all future packets traveling
on them. When a group with recovered path receives a packet,
CSPR just simply invokes the path verification component to
check whether the packet truly traveled the recovered path. If
yes, this packet obtains its path immediately. In CSPR, for a
given 3-tuple key, path groups are matched with the packet fol-
lowing the ascending order of gldx keys. At worst, the packet
might be assigned to a newly formed path group. Thanks to iden-
tifying each individual path, a large number of packets could
have their path with no recovery delay and meanwhile CSPR
avoids huge computation overhead, which will be demonstrated
in our evaluations.

D. Optimization

In this section, we propose a set of optimization techniques
to improve the performance of our basic design.

Reduction of Path Representation Space: This optimization
aims to reduce the number of elements in a representation space
by continuously monitoring the network topology. The min-
imum number of packets required to recover a length of & path
is cklog(Z'), which is proportional to the space size N. The
basic design utilizes all N nodes in the network to form the
space. This component tries to reduce the space size for each
path group and thus reduces its needed packets for path recon-
struction. For any node ¢, CSPR maintains a first-hop receiver

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

set S;, which is learned from received packets (via the first-hop
receiver field in packet header) and recovered paths (the next
hop of node i along a path). All elements in $; have ever re-
ceived packets from node i. The reduced representation spaces
for all groups with the sAddr attribute as node ¢ are the same,
denoted as N;. Elements of N; are added in an iterative manner:
1) elements in §; belong to N;; 2) elements in S j»where j € N;,
belong to N;.

We take node 9 in Fig. 4 as an example to illustrate the for-
mation of Ngy. The first-hop receiver set Sg of node 9 contains
5 and 8. By iteratively including all first-hop receivers of nodes
in Ng, Ng finally contains 2, 5, 8, and 10. Compared to original
space N, the size of Ny is reduced from 10 to 4. From our in-
vestigation on the CitySee packet trace, we find the average and
maximum reduced representation space sizes are only 39 and
104 respectively, which are much smaller than the total number
of nodes 245 in the network.

Even with sufficient packets, path reconstruction based on the
reduced representation space might be unsuccessful unless all
intermediate nodes of the path are included in the reduced space.
As it is hard for CSPR to explicitly determine whether all inter-
mediate nodes are included, we thus use the reduced represen-
tation space as a backup scheme. For each path group, CSPR al-
ways use the original /N-dimension representation space for the
reconstruction. If the reconstruction fails, CSPR recovers one
more time using the reduced space. If the second reconstruction
succeeds, CSPR will launch the path verification component to
verify the correctness of the recovered path; Otherwise, CSPR
waits for more packets and performs the next round reconstruc-
tion, still starting from the N-dimension representation space.

Reduction of Path Vector Sparsity: This optimization tries to
reduce the sparsity of unknown path vectors by inferring from
recovered path vectors. The intuition behind it is that if we know
the existence of some intermediate nodes prior to path recon-
struction, we can treat their elements in the path vector as zeros
such that reduces the vector sparsity. As a result, fewer packets
are needed to reconstruct the path.

After a path p gets recovered, CSPR may potentially reduce
the path vector sparsity of another path ¢. To control the com-
putation overhead, in current CSPR, path vector sparsity reduc-
tion is only applied for a path g having the same source and
path length as p. For an intermediate node ¢ at the Ath hop
along path p, H hash values v; = f(i x h) € {0,1,...,L —
1},7=1,2,..., H,are obtained by feeding the product of i x h
to the H hash functions. If all »; bits in the Bloom filter bFlt of
path g are 1’s, we denote the input ¢ x % is contained by bFlt
of path q. Node i is thus considered to be included in path ¢ as
well at the same hop & with a high probability. Therefore, CSPR
can opportunistically omit the element for node 2 in the path
vector of path g and the vector sparsity is reduced by one. By
excluding all intermediate nodes (of path p) contained in path
¢'s Bloom filter, the original formulation transforms to a new
version Y/ = ®'s’. In particular, by removing the annotations
from nodes passed the bFIt testing of path ¢, each element in Y’
only preserves the summation of node ID and coefficient prod-
ucts for the remaining nodes in path g. Similarly, the recovered
s’ only contains nonzero values for those preserved nodes. A re-
duced space N only including nodes for the remaining hops can
be constructed as well. Finally, the number of needed packets
for the path reconstruction is largely reduced.

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

Source 8x1 9x2 5%3 2x4 Sink
v v v v
[bFlt of path P,]

Testing result @—Mj—’(\z_’(\z_’é

Fig. 8. Example for reduction of path vector sparsity.

For example, in Fig. 8, CSPR has recovered path P; in
Fig. 4 and tries to reduce the path vector sparsity of P». Among
four intermediate nodes (8, 9, 5, and 2) in Ps, the nodes 8, 5,
and 2 are tested to be contained by bFIt of P;. The path vector
sparsity of P is thus reduced to 1. The products of their node
ID and coefficients are deducted from Y for P to form Y, in
which only the product of the node ID and the coefficient for
the second hop node in P remains. The reduced space N for
the new equation is constructed by candidate nodes at that hop,
i.e., first-hop receivers of 8, Sg.

Path vector sparsity reduction is launched when a new path
is correctly reconstructed and there exists unrecovered paths
having the same source and path length as this one. Similar to
packet misclassification, a node might be false positively re-
moved from the path vector in the Bloom filter testing phase.
In this case, the inferred path is incorrect and cannot pass the
path verification. Fortunately, with a proper Bloom filter setting,
false positive scenario is rare in CSPR.

Heuristic Path Scanning: For those path groups with insuf-
ficient accumulated packets even after a long time, this com-
ponent is designed to scan possible paths for them based on
the learned network topology. It is triggered when the path re-
construction deadline of a path group is approaching. As this
scheme is relatively computation intensive, it recovers path not
only for the group that triggers its execution, but also for other
unrecovered groups whose paths have the same source, sAddr,
as this group at the same time.

Starting from the source node ¢ of the path group that triggers
heuristic path scanning, CSPR builds a directed graph covering
all nodes in the reduced representation space N;. For any two
nodes a and b in N;, if node b is in the first-hop receiver set
of node a, i.e., b € §,, CSPR adds an arrow from a to . This
component enumerates all possible paths from source node i to
the sink in the directed graph. For each enumerated path, CSPR
treats it as a newly reconstructed path and applies the path ver-
ification procedure to check whether it is a valid path for some
unrecovered group whose path is originated from node 7. As
a result, heuristic path scanning can recover paths for multiple
path groups.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CSPR with
comparisons to two state-of-the-art approaches based on a 29
TelosB mote testbed and the CitySee packet trace.

A. Evaluation Setup

Compared Approaches: We compare CSPR to the two state-
of-the-art approaches, Pathfinder [16] and MNT [20]. For fair-
ness, we implement the path speculation in Pathfinder [16] as a

1955

remedy method for both Pathfinder and MNT to improve their
performances when anchors are lost. We add 1-B XOR field into
packet header for MNT as checksum, similar with Pathfinder, to
verify the reconstructed paths. For all the three approaches, we
define the same path recovery delay bound § to meet practical
requirements. In general, the three approaches will reconstruct
packet paths following their core principles (referred to as core
method) and employ the remedy methods (heuristic path scan-
ning for CSPR and path speculation for Pathfinder and MNT, re-
ferred to as remedy method) to reconstruct those failed packets
when path recovery delay bound is approaching. All approaches
are running on a desktop PC with dual-core 3.16 GHz CPU and
4 GB RAM. The execution of remedy methods have a time limit
of 1 s to avoid excessive computation overhead.

Performance Metrics: The recovery accuracy for each node
is calculated as T2t reovered Rts ¢ 100%. Similarly,
the frE?overyt false gos{itivli for each node is computed as
frof false poliive recovered pkis . 100% The path recovery
delay for packet i is defined as sequence number offset
SEQ; — SEQ; (with no reordered packets). The path of packet i
is successfully recovered after packet 7, generated by the same
source as packet 7, is received. We set the bound 4 = 50, which
means a remedy method will be employed to search possible
paths when another 50 packets of the same source are received.
Small § will reduce the overall recovery delay but trigger
much more computation overhead. Intuitively, the approach
with higher recovery accuracy yet lower false positives and
smaller path recovery delays is expected for per-packet path
reconstruction in WSNss.

B. Testbed Experiments

We implement CSPR on TelosB mote and use a 29-node
testbed to validate its feasibility and applicability. Twenty-nine
TelosB motes are uniformly distributed in a square area. One
node acts as the sink and is placed at the top left corner. Due
to the limitation of experimental space, we configure the trans-
mission power of each TelosB mote to the minimum level, and
thus the communication range of each sensor node would be
about 15 cm. To include the aMsr and bFIt two fields into the
packet, we preserve the default packet header format and append
them at the end of the payload. It provides the most flexibility
to avoid additional communication overhead for the packets that
do not need the path reconstruction, e.g., control traffics, which
are usually exchanged among neighbors. In the experiments,
each node generates packets randomly with an average inter-
packet interval of 1 s. Within the network, each intermediate
node along a path updates the packet header following the re-
quirements of each approach. The sink receives packets from
network and separately executes the three approaches to recon-
struct packet paths. The actual path is recorded in packets as
ground truths. The experiment lasts for about 50 min and col-
lects 60 000 packets.

The sink records the path reconstruction progress of each ap-
proach every 30 s. Concretely, for each approach, the portions of
packets accurately recovered with only the core method and the
complete approach are both computed. The evolution of path re-
construction progress of each approach is plotted in Fig. 9. From
the figure, we find that Pathfinder and MNT can only recon-
struct 47% and 36% packet paths based on their core methods,
respectively. Most reconstruction failures are caused by packet

1956

R R R R R

g
& 79 ——CSPR (core) —o—CSPR
§ - ===~ Pathfinder (core) —o— Pathfinder
g 60 —-=--MNT (core) —v— MNT
g
> 50 (T LR RS DO TN IS pevsvis o I iy
P | S S S
o
& 40

Bt Sttt ettt

20

0 10 20 30 40 50 60 70 80 90 100

Time (unit: 30 seconds)

Fig. 9. Path reconstruction progresses with the core and complete methods of
each approach.

L T T T T T I e T e T T T e T I T T T T T T
R 80
40

€
Q ETREE v
g 20 Core method 77 Remedy method
a O 5 10 15 20 25 2
100, b)
& sl Y Y
€ 60 Ay %
g 40 1 ;
2% oW ‘
5 10 15 20 25 28
c)

K Q
K S
ANNNANNANNNY
NN\
oY

I

Node index

[CISSSRSSSSRY
EANNN\NNW
K S
—
RN

Fig. 10. Portion of packets recovered by core and remedy methods of each
approach. (a) CSPR. (b) Pathfinder. (¢c) MNT.

losses (about 38% packet loss rate during experiment). With
no fixed packet generation interval, Pathfinder loses its accu-
racy in locating anchors, which further harms the performance.
Assisted by the remedy method (i.e., path speculation), they
can achieve similar accuracy as the core method of CSPR, i.e.,
>95%. With heuristics path scanning, CSPR achieves accuracy
of 100%. Fig. 10 further presents the detailed per-node path re-
construction performance. Twenty-four nodes can recover their
packet paths just by the core method of CSPR. With respect to
the other two approaches, however, most nodes achieve a good
recovery accuracy via remedy method.

Rather than reconstructing path for each individual packet,
CSPR distinguishes each path and reconstructs a routing path
for a group of packets. As a result, once a path group has re-
covered its path, the future packets belonging to this group can
easily obtain their paths through path verification. The already-
recovered paths benefit all subsequent packets and can reduce
the overall path recovery delay. In Fig. 11, we present the packet
path recovery delay distribution of each approach. According
to the statistics, for such a small network, CSPR reconstructs
all paths based on a very small portion of packets (<1%), and
then obtains the paths of subsequent packet (>99%) with no re-
covery delay. When the core methods of Pathfinder and MNT
fail to reconstruct the paths, the remedy method would be used
before the expiring of bound §. We see that 31.5% and 40.8%
packets have great path recovery delay (> 10) for Pathfinder
and MNT, respectively. Though the remedy method can be im-
mediately used once the core method fails, it triggers tremen-
dous computation overhead.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

100 99.4% _ .
|:| CSPR

77} Pathfinder
[_IMNT

56.8%

40.8%

Recovery delay (packet intervals)

Fig. 11. Distributions of packet path recovery delay for each approach.

(@)

N

[]# of packets

..

8910111213111<

of packets
S 8

o

6 7

Recovery delays (packet intervals)

of packets

Routing path length (hops)

Fig. 12. (a) Path recovery delay distribution of delayed packets. (b) Routing
path length distribution of delayed packets.

We further analyze the detailed recovery delay performances
for those delayed packets by CSPR. From Fig. 12(a), we find
that only a few packets are really recovered with great path
recovery delay (e.g., > 10). For most delayed packets, CSPR
can still reconstruct their actual routing paths with a short
waiting time, which is less than 10 packet intervals (corre-
sponding to about 10 s in our testbed experiments). For those
delayed packets, we also study the distribution of their routing
path lengths and plot the results in Fig. 12(b). The packets
traveling longer routing paths tend to be recovered later, which
accords with intuitions. This is because the packets needed
for successful path reconstruction by CSPR is about M = ck
log(£F), which is proportional to the routing path length k.
Note that in the small testbed network with 29 nodes, only a
small portion of packets travel with long paths, e.g., >7 hops.
Thus, the number of delayed packets in Fig. 12(b) becomes
smaller when the path length is greater than 7.

C. Trace-Driven Simulations

To evaluate the scalability and efficiency of CSPR in practical
large-scale and more dynamic networks, we conduct extensive
trace-driven simulations by leveraging the practical packet trace
from the real-deployed and large-scale WSN CitySee [29], as
introduced in Section II-B. The packet trace includes packets
from a network of 245 nodes with 174 829 packets in total.

CSPR includes three components to make per-packet path re-
construction a success, i.e., the compressive-sensing-based path

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

10 @)
’
0.8 | =——Basic S
- = = Basic+Boost .’
w 06 - ’ 1
a —- = Basic+Boost+Scan 7
O 04 s 1
—"’ B
0.2 - 7

) B AL 3 i =
o 10 20 30 40 50 60 70 80 90 100

Recovery accuracy (%)

80 (b)
9 n
—~ 80 % [JBasic
& e, V] Basic+Boost
€ 40 Basic+Boost+Scan | - 359
Q
e 23%
d'? 2 129%16% 13% 7%
5% 4%
0 [1,50] 50< Unrecovered

Recovery delay (packet intervals)

Fig. 13. (a) CDF of path recovery accuracy. (b) Distribution of path recovery
delay.

reconstruction component (referred to as Basic), the path re-
construction optimization component based on path representa-
tion space shrink and path vector sparsity reduction (referred to
as Boost), and the heuristic path scanning component (referred
as Scan). To examine their efficiencies, we separately perform
path reconstruction based on the Basic component, the Basic
and Boost components, and all of the three components, and
measure the recovery accuracy and recovery delay in the three
execution cases. We present the CDF of recovery accuracy in
Fig. 13(a) for the three execution cases. For most nodes, the
Basic reconstructs paths for the greatest portion of packets, i.e.,
about 63.0%, which demonstrates its efficiency. Benefiting from
the learned network topology and recovered paths, the Boost re-
covers paths for 17.4% more packets. The Scan contributes a
considerable portion as well, which brings 15.2% accuracy pro-
motion further. On the other hand, both Boost and Scan reduce
the overall path recovery delay. In Fig. 13(b), we plot the sta-
tistical results of path recovery delay for all packets according
to whether a packet path is recovered with zero delay, within
the recovery delay bound 4, beyond the bound & or not recov-
ered at all. Thanks to Boost and Scan, many more packet paths
can be recovered with much less delay. Overall, about 32%
packets benefit from such optimizations and can recover their
paths within the bound 4.

We apply the three approaches, i.e., CSPR, Pathfinder, and
MNT, to reconstruct packet paths in the CitySee packet trace.
In Fig. 14, we plot the path reconstruction progress for each
approach with its core method and the complete method. Both
Pathfinder and MNT perform poorly when only executing their
core methods with recovery accuracy no more than 70% and
50%, respectively, at all time. Due to influences of topology dy-
namics and packet losses, the core methods of Pathfinder and
MNT frequently fail to identify anchors for packets, and thus
use the remedy method to recovery those packet paths. With
the remedy methods, they achieve a higher final recovery accu-
racy 74% and 62%, respectively. The curve sharps of Pathfinder
and MNT in Fig. 14 implicitly reflect the continuous influences
of packet losses. One lost packet may be the anchor for many
packets. On the contrary, CSPR achieves an accuracy 80.4%
even only with its core method. With the remedy method, CSPR
performs better and has a stable accuracy around 95% with the
final accuracy 96%.

We further summarize the CDFs of path recovery accu-
racy and false positive, for each approach, in Fig. 15. From

1957

S
=
O
©
S
Q
o
©
2
[
>
Q
o ’
x 20 ——CSPR (core) —0—CSPR
10 = = = Pathfinder (core) —0— Pathfinder
—-= MNT (core) —v— MNT
°% 10 20 30 40 50 60 70 75

Time (unit: 2 hours)

Fig. 14. Path reconstruction progresses with the core and complete methods of
each approach.

10 @
08| |=——=CSPR
06| |= == Pathfinder
w0
a == MNT 5
O 04 e
e
02 e
oo pmanEEe ==
00="10 20 30 40 50 60 70 80 90 100
Recovery accuracy (%)
(b)
of——————————< ==
o P
Y ——CSPR
O 04 'I,,'/“ = = = Pathfinder
02k == MNT
0~ 20 30 40 50 60 70 80

False positive (%)

Fig. 15. (a) CDF of path recovery accuracy. (b) CDF of false positive for each
approach.

Fig. 15(a), we find that CSPR outperforms Pathfinder and
MNT with significant advantages. Pathfinder and MNT per-
form poorly in the practical packet trace, which experiences
severe topology dynamics and packet losses as revealed in
Section II-B, with recovery accuracies of most nodes falling
in the range between 50% and 80%. Only 23% and 45%
nodes for MNT and Pathfinder, respectively, can achieve an
accuracy > 80%, while CSPR makes 95% nodes reach such
level. Furthermore, about 85% nodes achieve a high accuracy
> 90%. Overall, the average recovery accuracies for MNT,
Pathfinder, and CSPR are 62%, 74%, and 96%, respectively. In
Fig. 15(b), we see nonnegligible false positives in Pathfinder
and MNT, both of which verify the recovered paths mainly
based on the XOR field in packets. Pathfinder checks the result
with more information recorded in packet, and thus has fewer
false positives than MNT. Such path verification manners
result in on average 11% and 15% false positive for MNT
and Pathfinder, respectively. Thanks to the path verification
component enabled by the aMsr field, CSPR almost has no
false positive.

We present the distribution of path recovery delay in
Fig. 16(a), which also classify packets into four categories
according to the path recovery delay of each packet. Note that
the packets with false positive recovered paths are viewed as
unrecovered. Overall, the timely recovered packet portions,
i.e., packets in the first two categories, for MNT, Pathfinder,
and CSPR are 60%, 73%, and 91%, respectively. It is worthy
to note that CSPR recovers paths for the most packets with
zero delay. Because of the packet classification mechanism

1958

(a)

68% [CJcsPr

& 60 - 24\ 7 Pathfinder
S 40 MNT 38%
o 23%25Y 26%
o 20
o
0 1% 1% 2% A% L
[1,50] 50< Unrecovered

Recovery delay (packet intervals)
100 (0)

80 l
e (« «««««««'«l««(+

60 ‘ il

40 i
20| ‘ —O— Average packet portion ‘

Percent (%)

0 10 20 30 40 50 60 70 75

Time (unit: 2 hours)

Fig. 16. (a)Distribution of path recovery delay. (b) Portion of packets benefited
from the already-recovered paths.

(a)
100
AT A VAV IVIAVA VIV,
[l Pkts recovered with no delay
[__1Pkts recovered with delay

40H

ZO_Z Z _Z é Z

2 3 3 5 6 7 8 9 10
Routing path length (hops)

60H

Percent (%)

CDF

——pl=8 ——pl=9 ——pl=10

0 I I L 1 1 1 I 1
OD 20 40 60 80 100 120 140 160 180 200

Recovery delays (packet intervals)

Fig. 17. (a) Percentages of paths reconstructed on time and with delays.
(b) CDF of path recovery delays with different path lengths (i.e., pl).

in CSPR, a great portion of packets can recover their paths
at a negligible cost of only executing path verification with
the recovered paths in path groups. In Fig. 16(b), we further
plot the portion of packets that benefit from such mechanism.
After an accumulation phase of recovered paths, CSPR can find
correct paths for about 65% packets. As a result, CSPR avoids
repeating reconstruct those frequent traveled paths.

To understand the relation between the routing path length
and path recovery delay in large-scale sensor networks, we plot
the percentages of paths recovered on time and with delays with
respect to the routing path length in Fig. 17. Concretely, we clas-
sify all packets according to their routing path lengths, and for
each specific routing path length we calculate the ratios for both
the packets that are timely reconstructed and the packets that
are recovered with delays. According to Fig. 17(a), the longer
routing paths packets have traveled, the more likely their paths
will be reconstructed with delays, which coincides with the con-
clusion of Fig. 12(b). This is because CSPR needs to accumulate
more packets to enable compressive-sensing-based path recon-
struction for the longer routing paths. To further understand the
distribution of path recovery delays, we plot Fig. 17(b) to show
the CDF of the recovery delays for each specific path length.
From Fig. 17(b), we find that in general the longer a path the
packet travels, the larger recovery delay it will suffer. For ex-
ample, about 58% packets traveling on paths with length of
7 hops can be reconstructed within 40 packet intervals, while
about 80% packets traveling on paths with length of 3 hops can
be recovered.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

80 —

Average execution time

@
=]

Execution time (Milliseconds)
S 15

2 3 4 5 6 7 8 9 10
Routing path length (hops)

Fig. 18. Program execution time of compressive-sensing-based path recon-
struction by CSPR versus the routing path length.

CSPR is a lightweight path reconstruction approach, and the
overhead of the compressive sensing recovery, e.g., CoSaMP, is
negligible on a server. In Fig. 18, we measure the program exe-
cution time as the performance metric to further understand the
computation overhead of our design. For different routing path
lengths, we plot the reconstruction delays, which are mainly
caused by the compressive sensing recovery. Fig. 18 shows that
the overhead due to compressive sensing recovery is negligible,
which is less than 100 ms for all routing path lengths observed
in the experiments.

In Section II-B, we have already observed about 20% natural
packet losses. To examine the impacts of severe packet losses to
the path reconstruction performance of each approach, we fab-
ricate extra packet losses by randomly removing packets from
the original trace. We present the recovery accuracy and false
positive of each approach with various extra packet loss rates in
Fig. 19. The extra packet loss rate labeled “0” corresponds to
the original trace. With more packets lost, the performance of
MNT drops quickly. MNT becomes to be not applicable, with
accuracy <50%, when the extra packet loss rate beyond 15%.
The performance of Pathfinder is also affected, with accuracy
dropping from 74% to 66%. These results illustrate that packet
losses indeed have a strong impact on the performances of ap-
proaches relying on interpacket correlation. When anchors are
lost, Pathfinder and MNT use the remedy method to search pos-
sible paths for packets and thus introduce false positives, due
to their relaxed path verification manners. From Fig. 19(a), we
observe nonnegligible false positives for Pathfinder and MNT
with averages ranging from 4% to 15%. Contrastively, CSPR is
insensitive to packet losses and achieves stable accuracy >92%
with no false positive.

Overhead Comparison: Finally, we investigate the de-
sign overhead among our method, MNT, Pathfinder, and the
straightforward method (named as DirRec) that directly records
the relay node ID sequence. In Table I, we compare the four
approaches from the following six aspects: the packet overhead,
the in-sensor storage, the in-sensor computation overhead,
the time complexity for each path reconstruction operation,
the number of packets required in each path reconstruction
operation, and the frequency of path reconstructions.

In summary, CSPR introduces comparable packet overhead,
in-sensor storage, and computation overhead with other three
approaches, but higher computation overhead at the server side
for each run of the path reconstruction. However, in CSPR, after

LIU et al.: PATH RECONSTRUCTION IN DYNAMIC WIRELESS SENSOR NETWORKS USING COMPRESSIVE SENSING

1959

TABLE 1
COMPARISON AMONG DIFFERENT PATH RECONSTRUCTION APPROACHES?!

Pkt overhead Storage Computation Time complexity # of pkts required Reconstruction frequency

CSPR 8 bytes 200 bytes Path info. encoding O(AMN) 1.5klog(¥) Once for each path group
MNT 5 bytes none negligible O(WP) 2k Once for each packet
Pathfinder 7 bytes 100 bytes Huffman encoding O(FP) k Once for each packet
DirRec 2k bytes none negligible o(1) 1 Once for each packet

1 M is the number of packets needed for path reconstruction, N is the network size. A, the maximum iterations of CoSaMP [31], is set as 100.
k is the routing path length. P is the maximum routing path length in the network. W is the size of potential anchor packet set in MNT. F

is the size of packet set for offset estimation in Pathfinder.

@)
[[C] CSPRIZZ Pathfinder[_|MNT |

Nillilil R

3
o

N
o

=
o

(=]

-
S (o2} o] o
o o o o

Recovery accuracy (%) False positive (%)
N
o

o
[
(=]
(&3]

10 15 20 25 30
Extra packet loss rate (%)

Fig. 19. (a) False positive and (b) recovery accuracy of the three approaches
with various extra packet loss rates. Each value is an average of 10 runs.

one routing path was recovered, all the following packets trav-
eling the same routing path do not need explicit path recovery.
Therefore, the computation overhead amortized to each indi-
vidual packet is negligible. As we have investigated in this sec-
tion, the routing paths for about 99% and 65% of packets do
not need to be explicitly reconstructed on our testbed and the
CitySee packet trace, respectively.

V. RELATED WORK

Routing Path Reconstruction: CAPTRA [35] identifies a
packet path through the coordinations among nodes in a net-
work-wide scale. Alam et al. [2] adopt a probabilistic packet
marking technique to trace the provenance of a packet. Both
of the works cannot realize per-packet path reconstruction as
CSPR. PathZip [25] compresses path information of a packet
into a hash value and obtains the packet path by matching
all possible paths with the hash value. As the computation
complexity grows exponentially with the network size, PathZip
may not scale to work with large networks. Pathfinder [16]
and MNT [20], the two state-of-the-art approaches, recon-
struct packet path relying on interpacket correlation. Their
performances, however, are severely influenced by topology dy-
namics and packet losses, just as demonstrated in Section II-B.
Different from them, CSPR is insensitive to network dynamics
and lossy links due to its distinct design. In [24], we have re-
ported the preliminary design of CSPR. In this journal version,
we supplement the path vector sparsity reduction technique,
perform more solid testbed and trace-driven evaluations for
both the original design and the new technique, and provide
detailed comparison between CSPR and the state-of-the-art
approaches.

Network Tomography: Network tomography in wired net-
works has been well studied, and tremendous approaches have
been proposed to investigate the internal behaviors [8], [14]. By
actively generating probe packets from network nodes, network
tomography mainly aims to recover the network topology or
infer some link-level characteristics [27], e.g., delay or packet
loss [34]. Restricted by the available resources, extensive
probes are prohibited for network topography in WSNs. Re-
cently, many works have been proposed to achieve network
tomography in WSNs by leveraging statistical methods [32],
group testing [7], compressive sensing [37], and optimization
methods [15]. Compared to those works, CSPR reconstructs
routing path for each individual packet without triggering extra
probe packets.

Network Diagnosis: Network diagnosis aims at inferring the
root cause for abnormal networking symptoms and maintaining
the health of deployed WSNs. Relying on the collected system
metrics from network, Sympathy [33] pinpoints the root cause
of network failures through a decision tree. PAD [23] captures
abnormal events and infers the root cause for the observed
abnormity in a probabilistic manner. The active packet marking
scheme in PAD can only recover one routing path for each
source node, while the underlying network topology is required
to be relatively stable. PD2 [6] is a data-centric approach that
locates performance problems based on data flows. D2 [10]
detects and diagnoses anomaly by mining network symptoms.
AD [30] exploits the correlation among different system met-
rics to discover silent failures. Existing works in this category
are orthogonal to CSPR and are potentially benefitted from the
outputs of CSPR for more accurate and fine-grained diagnostic
results.

VI. CONCLUSION

In this paper, we present the CSPR, a compressive-sensing-
based path reconstruction approach. Different from the state-of-
the-art approaches, CSPR is inherently insensitive to network
dynamics and lossy links. Extensive evaluations through both
testbed-based experiments and trace-driven simulations show
that CSPR outperforms the state-of-the-art approaches in var-
ious network settings.

ACKNOWLEDGMENT

The authors acknowledge the support of practical packet trace
from the CitySee project [29].

REFERENCES

[1] “TelosB mote datasheet,” [Online]. Available: http://www.willow.co.
uk/TelosB_Datasheet.pdf

[2] S.Alam and S. Fahmy, “A practical approach for provenance transmis-
sion in wireless sensor networks,” Ad Hoc Netw., pp. 28-45, 2013.

1960

[3] A. Broder and M. Mitzenmacher, “Network applications of bloom fil-
ters: A survey,” Internet Math., vol. 1, no. 4, pp. 485-509, 2004.

[4] E. J. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” /[EEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb.
2006.

[5] E. J. Candés and M. B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar.
2008.

[6] Z. Chen and K. G. Shin, “Post-deployment performance debugging in
wireless sensor networks,” in Proc. IEEE RTSS, 2009, pp. 313-322.

[7] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, “Graph-
constrained group testing,” IEEE Trans. Inf. Theory, vol. 58, no. 1, pp.
248-262, Jan. 2012.

[8] A. Coates, A. O. Hero, III, R. Nowak, and B. Yu, “Internet tomog-
raphy,” IEEE Signal Process. Mag., vol. 19, no. 3, pp. 47-65, May
2002.

[9] D. Dong, M. Li, Y. Liu, X.-Y. Li, and X. Liao, “Topological detection
on wormholes in wireless ad hoc and sensor networks,” IEEE/ACM
Trans. Netw., vol. 19, no. 6, pp. 1787-1796, Dec. 2011.

[10] W.Dong, C. Chen, J. Bu, X. Liu, and Y. Liu, “D2: Anomaly detection
and diagnosis in networked embedded systems by program profiling
and symptom mining,” in Proc. IEEE RTSS, 2013, pp. 202-211.

[11] W. Dong, Y. Liu, Y. He, and T. Zhu, “Measurement and analysis on
the packet delivery performance in a large scale sensor network,” in
Proc. IEEE INFOCOM, 2013, pp. 2679-2687.

[12] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289-1306, Apr. 2006.

[13] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassing routing
holes in sensor networks,” in Proc. IEEE INFOCOM, 2004, pp.
187-200.

[14] C. Fragouli, A. Markopoulou, and S. Diggavi, “Topology inference
using network coding,” in Proc. 44th Annu. Allerton Conf. Commun.,
Control, Comput., 2006.

[15] Y. Gao et al., “Domo: Passive per-packet delay tomography in wireless
ad-hoc networks,” in Proc. IEEE ICDCS, 2014, pp. 419—428.

[16] Y. Gao et al., “Pathfinder: Robust path reconstruction in large scale
sensor networks with lossy links,” in Proc. [IEEE ICNP, 2013, pp. 1-10.

[17] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion tree protocol,” in Proc. ACM SenSys, 2009, pp. 1-14.

[18] L. He, J. Pan, and J. Xu, “A progressive approach to reducing data
collection latency in wireless sensor networks with mobile elements,”
IEEE Trans. Mobile Comput., vol. 12, no. 7, pp. 1308-1320, Jul. 2013.

[19] L.He et al., “Evaluating service disciplines for on-demand mobile data
collection in sensor networks,” IEEE Trans. Mobile Comput., vol. 13,
no. 4, pp. 797-810, Apr. 2014.

[20] M. Keller, J. Beutel, and L. Thiele, “How was your journey?: Uncov-
ering routing dynamics in deployed sensor networks with multi-hop
network tomography,” in Proc. ACM SenSys, 2012, pp. 15-28.

[21] Z. Li, M. Li, and Y. Liu, “Towards energy-fairness in asynchronous
duty-cycling sensor networks,” Trans. Sensor Netw., vol. 10, no. 3, p.
38,2014.

[22] Z. Li, J. Wang, and Z. Cao, “Ubiquitous data collection for mobile
users in wireless sensor networks,” in Proc. IEEE INFOCOM, 2011,
pp. 2246-2254.

[23] Y. Liu, K. Liu, and M. Li, “Passive diagnosis for wireless sensor net-
works,” IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1132—-1144, Aug.
2010.

[24] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Path reconstruction in dy-
namic wireless sensor networks using compressive sensing,” in Proc.
ACM MobiHoc, 2014, pp. 297-306.

[25] X. Lu, D. Dong, X. Liao, and S. Li, “PathZip: Packet path tracing in
wireless sensor networks,” in Proc. IEEE MASS, 2012, pp. 380-388.

[26] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering
for large-scale wireless sensor networks,” in Proc. ACM MobiCom,
2009, pp. 145-156.

[27] L.Ma, T. He, K. K. Leung, D. Towsley, and A. Swami, “Efficient iden-
tification of additive link metrics via network tomography,” in Proc.
IEEE ICDCS, 2013, pp. 581-590.

[28] Q.Ma, K. Liu, X. Miao, and Y. Liu, “Sherlock is around: Detecting net-
work failures with local evidence fusion,” in Proc. IEEE INFOCOM,
2012, pp. 792-800.

[29] X.Mao, X. Miao, Y. He, X. Li,and Y. Liu, “CitySee: Urban CO» mon-
itoring with sensors,” in Proc. IEEE INFOCOM, 2012, pp. 1611-1619.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

[30] X. Miao, K. Liu, Y. He, Y. Liu, and D. Papadias, “Agnostic diagnosis:
Discovering silent failures in wireless sensor networks,” in Proc. [EEE
INFOCOM, 2011, pp. 1548-1556.

[31] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmonic Anal.,
vol. 26, no. 3, pp. 301-321, 2009.

[32] H.X.Nguyen and P. Thiran, “Using end-to-end data to infer lossy links
in sensor networks,” in Proc. IEEE INFOCOM, 2006, pp. 1-12.

[33] N. Ramanathan et al., “Sympathy for the sensor network debugger,” in
Proc. ACM SenSys, 2005, pp. 255-267.

[34] P. Sattari, A. Markopoulou, C. Fragouli, and M. Gjoka, “A network
coding approach to loss tomography,” IEEE Trans. Inf. Theory, vol.
59, no. 3, pp. 1532—-1562, Mar. 2013.

[35] D. Sy and L. Bao, “CAPTRA: Coordinated packet traceback,” in Proc.
ACM/IEEE IPSN, 2006, pp. 152-159.

[36] S.Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131-155, 1st Quart., 2012.

[37] W. Xu, E. Mallada, and A. Tang, “Compressive sensing over graphs,”
in Proc. IEEE INFOCOM, 2011, pp. 2087-2095.

[38] T. Zhu et al., “Understanding routing dynamics in a large-scale wire-
less sensor network,” in Proc. IEEE MASS, 2013, pp. 574-582.

Zhidan Liu received the B.E. degree from Northeastern University, Shenyang,
China, in 2009, and the Ph.D. degree from Zhejiang University, Hangzhou,
China, in 2014, both in computer science and technology.

He is currently a Research Fellow with Nanyang Technological University,
Singapore. His research interests include wireless sensor networks, mobile com-
puting, and data analytics.

Zhenjiang Li (M’12) received the B.E. degree in computer science and
technology from Xi'an Jiaotong University, Xi’an, China, in 2007, and the
M.Phil. degree in electronic and computer engineering and Ph.D. degree in
computer science and engineering from Hong Kong University of Science and
Technology, Hong Kong, in 2009 and 2012, respectively.

He is currently a Research Fellow with Nanyang Technological University,
Singapore. His research interests include distributed networking systems, cyber-
physical systems, and mobile computing.

Mo Li (M’06) received the B.S. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2004, and the Ph.D. degree in
computer science and engineering from Hong Kong University of Science and
Technology, Hong Kong, in 2009.

He is currently an Assistant Professor with the School of Computer Engi-
neering, Nanyang Technological University, Singapore. His research interests
include wireless sensor networking, pervasive computing, and mobile and wire-
less computing.

Wei Xing received the B.E., M.E., and Ph.D. degrees in computer science and
technology from Zhejiang University, Hangzhou, China, in 1989, 1992, and
2009, respectively.

He joined the Department of Control in College of Information Technology,
Zhejiang University, in 1992. Since 2002, he has been with the College of Com-
puter Science and Technology, Zhejiang University, where he is currently an
Associate Professor. His research interests include multimedia technology and
Internet of Things.

Dongming Lu received the B.E., M.E., and Ph.D. degrees in computer science
and technology from Zhejiang University, Hangzhou, China, in 1989, 1991, and
1994, respectively.

He is currently a Professor with the College of Computer Science and Tech-
nology, Zhejiang University. His research interests include Internet of Things,
multimedia technology, and digital preservation of cultural heritage.

