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Fingerprinting Mobile User Positions in Sensor
Networks: Attacks and Countermeasures
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Abstract—We demonstrate that the network flux over the sensor network provides fingerprint information about the mobile users
within the field. Such information is exoteric in the physical space and easy to access through passive sniffing. We present a theoretical
model to abstract the network flux according to the statuses of mobile users. We fit the theoretical model with the network flux
measurements through Nonlinear Least Squares (NLS) and develop an algorithm that iteratively approaches the NLS solution by
Sequential Monte Carlo Estimation. With sparse measurements of the flux information at individual sensor nodes, we show that it is
easy to identify the mobile users within the network and instantly track their movements without breaking into the details of the
communicational packets. Our study indicates that most of existing systems are vulnerable to such attack against the privacy of mobile
users. We further propose a set of countermeasures that redistribute and reshape the network traffic to preserve the location privacy of
mobile users. With a trace driven simulation, we demonstrate the substantial threats of the attacks and the effectiveness of the

proposed countermeasures.

Index Terms—Sensor networks, network flux, mobile user, fingerprint.

1 INTRODUCTION

ECENT advances in Wireless Sensor Network (WSN)

technologies envision more pervasive usage of the
sensor network where the human beings are deeply
interacting with the cyber-physical environment. In addi-
tion to the traditional paradigm of data collection from
remote sensor networks, people may coexist in the same
physical space of interest with the sensor network infra-
structures. Equipped with 802.15.4 compatible communi-
cating devices, each user is able to move around within the
sensor network and directly communicate with nearby
sensors, capable of pervasive access to the instant data over
the entire field.

In such a pervasive context of data access, the deployed
infrastructural sensor network is capable of simultaneously
supporting multiple mobile users and providing them with
field data in an anyone-anywhere-anytime manner. There
have been substantial applications based on this data access
mechanism, from ubiquitous data acquisition to human
navigation, etc., [11], [12]. The mobile users access the
network at different locations and acquire network-wide
data instantly through intermediate nodes.

In this paper, however, we demonstrate that such a
working paradigm suffers from a potential risk of leaking
the location privacy of users. With alarming ease, a
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malicious entity can track the every move of mobile users
only from passively sniffing the network traffic flux at a
sparse set of points. They do not even need to break into the
content of data packets.

The mobile users access the network at different
locations and produce their own traffic flows, respectively,
across the network. In most of existing works, a data
collection tree is built for each mobile user and network-
wide data are delivered by intermediate sensor nodes along
the tree [9], [13]. The produced traffic flows of different
mobile users add upon each other at intermediate nodes
and the traffic amounts cumulate. If we summarize the
traffic flux distributed over the network we get a flux
pattern of particular shape. Fig. 1 depicts the network flux
pattern where there are three mobile users collecting data
from the network. Fig. 1a presents the three mobile users
and their data collection trees built across the network and
Fig. 1b depicts the network flux pattern introduced by the
mobile users. Indeed, the pattern of the network flux is
related to the statuses of mobile users. It digests the
information including the number of mobile users, their
locations, their traffic stretches, etc. Thus, by exploring the
traffic pattern over the network, the adversaries are able to
build a mapping between the instant distribution of mobile
users and the observed network flux.

As reported in our preliminary work [10], a parameter-
ized model is built to abstract the network flux with
different situations of mobile users. By fitting the
theoretical model to the measurements on real network
flux, we are able to gradually identify the locations of
mobile users distributed over the field. While gathering
the flux information over the entire network might be of
heavy overhead, we show that even with sparse measure-
ments of the flux at a small set of individual sensor nodes
we are still able to fingerprint the mobile users through
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(a) (b)

Fig. 1. The network flux with three mobile users. (a) The data collection
trees. (b) The network flux pattern.

parameter fitting. We further develop an algorithm that
iteratively approaches the movements of mobile users by
Sequential Monte Carlo Estimation technique. As more
flux measurements are cumulated, our algorithm con-
verges to the moving trajectories of mobile users and
approximates their locations with high accuracy.

A particular threat of such an attack is that compared to
the vast information that can be revealed, the required
knowledge is extremely cheap. Only sparse knowledge of
the network flux is enough for the entire calculation. As a
matter of fact, due to the broadcast nature of the wireless
communication medium, such information is easy to access
through passive sniffing and the malicious entities could
exchange such sniffing information over external channels
without the network nodes’ awareness. As a direct result,
we demonstrate that most existing systems are vulnerable
in protecting the privacy of mobile users. With respect to
the preliminary conference version, in this paper, we
further propose a set of countermeasures to redistribute
and reshape the network traffic. By considering the traffic
distribution and moving trajectories of mobile users in
building the data collection tree, we are able to smartly
smoothen the traffic pattern without imposing much extra
traffic burden to the network. We can, thus, prevent leaking
the location privacy with little extra overhead. We exten-
sively evaluate the proposed countermeasures with real
data trace driven simulations. The results in Appendix H,
which can be found on the Computer Society Digital
Library at http://doi.ieeecompute rsociety.org/10.1109/
TPDS.2011.213, suggest that the traffic redistributing and
reshaping are effective and efficiency in addressing such
potential attacks.

The rest of the paper is organized as follows. Section 2
briefly introduces related work. Section 3 describes the
main design rationale. In Section 4, we give detailed
descriptions on how we fingerprint the mobile users with
sparse samplings of network flux. We propose a set of
countermeasures against the attack in Section 5. In Section 6,
we validate our design with extensive simulations. Finally,
we conclude this work in Section 7.

2 REeELATED WORK

Knowing accurate locations of interesting objects or people
is of essential importance for many pervasive applications.
Initial attempts of the research community include LAND-
MARC [15], RADAR [2], Cricket [17], etc. There have been

also many approaches proposed for locating and tracking
objects within the sensor network. More details about those
related works can be found in Appendix A, available in the
online supplemental material, [6], [8], [17], [18]. Different
from all existing studies, in this work, we demonstrate that
even when both the moving entities and the sensor network
infrastructures are noncooperative, a malicious entity can
still identify the mobile users with minimum information
that is difficult to secure.

The problem of disclosing user privacy in wireless
network context has recently drawn the concern of
research community. There have been studies showing
that the location privacy could be vulnerable with the
“broadcast” wireless communication channels [1], [3], [16].
They demonstrate that the adversaries are able to acquire
user locations with wireless fingerprint information that
can be obtained through direct or indirect access to the
inbound and outbound traffic nearby the user. Most
existing studies assume that the adversaries have direct
access to the data packets or heavy monitoring of the
traffic flows to obtain necessary fingerprint information. In
this work, however, we show that a sparse sampling on
the amount of traffic flux in the field suffices to reveal fair
amount of location privacy of mobile users, which is much
cheaper and easier for the malicious entities to launch.
Deng et al. [5] noticed similar attacks based on traffic
analysis. Their work, however, focuses on the scenario
where there is only one static base station within the
network. There is also no detailed analysis on how
the adversaries can absorb location information from the
traffic patterns.

3 RATIONALE

The goal of adversaries is to solely utilize network flux
information to fingerprint the mobile users within the
sensor network field. In this section, we first formalize the
problem that we are studying, including the application
scenario, design objective, assumptions, etc. We then
develop a parameterized model to predict the network flux
over the field. We introduce the basic design rationale of
locating mobile users through briefing the network flux.

3.1 Problem Statement

We consider the scenario where multiple mobile users
move around within the sensor network field, collecting the
sensory data from the network.

Let the number of mobile users be K. Each mobile user
repeatedly collects the updated data from the network at its
own will. The data collection of each user happens at
different time and different places. For any mobile user i,
there exists a time series of data collections [t!,t),...,t},]
while the corresponding positions are [p},pi,...,pL.].
Different users may have different time series of data
collections independent of each other. Our goal is to track
those mobile users, i.e., to figure out the location instances
of each mobile user {[p{,p},...,p};]|1 <i < K}.

Toward such a goal, minimum capability is required by
the adversary to perform attack on location privacy. What
we assume available for the adversary are the instant
measurements of the traffic flux over the network. The
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adversary launches outside attack in the network, i.e., the
adversary does not have to compromise any legitimate
nodes yet does not need to break into the content of any
data packet delivered over the network. Such outside attack,
however, is particularly dangerous as the scope of the
attack is broad. Even in the sensor network with highly
secured communicational links, where the internal network
operations can be protected by light-weight symmetric-key
or asymmetric cryptographic mechanisms, the adversary
can obtain the desired traffic flux information by simply
sniffing the data amount delivered on the air.

We assume that the adversary measures the network
traffic flux at each time window AT The time window AT
determines the measurement granularity. When AT — 0,
we get ever more delicate observation of the network flux.
In practice, AT is limited by the inherent duration of
wireless transmissions, synchronization among different
observers, etc. Nevertheless, with current technologies, AT
can be bounded at the “seconds” level, leading to minor
observation error compared with the intrinsic system error
brought by the discrete position estimations with “minutes”
intervals. Within each time window, different mobile users
may or may not happen to initiate the data collection. In a
more general way as adopted in most existing works, when
one mobile user wants to collect the data from the network,
it builds a data collecting tree that roots at the sink and
spans the network. Different mobile users may have
different traffic stretches, i.e., they collect different propor-
tions of data from each node due to their interests at
different environment aspects. The measured network flux
at each time window is the sum-up of the traffic F; initiated
by each mobile sink. At each node, we can measure the
cumulated traffic flux

F=>F,.

i=1

However, we cannot exactly separate each share of the
flux amount introduced by each mobile user. Instead, we
develop a mathematical model to fit the mobile user statuses
according to such combined fingerprint flux information.

3.2 Network Flux Model

In this section, we study how the network flux is composed
when the mobile user absorbs data from the network-wide
data collecting tree. We accordingly build a network flux
model to approximate the amount of data flux at each node.

Note that the data flux at each intermediate node is the
cumulated amount of data it generates and relays, includ-
ing the data generated at all successor nodes on the subtree
it roots. We first consider a continuous scenario where
sensor nodes are deployed over the field with infinite
density. Fig. 2a depicts a sector-like region of angle w and
radius [ originated at the user. We assume that each point
within the sector-like region generates a unit of data and the
traffic stretch is s for each unit area. For the arc a which is d
distant from the sink, all data generated at points beyond a
(in the blue area) pass the arc. Let the average traffic flux at
each point on arc a be F;,. We have the entire amount of data
delivered across a

d sink
(a) (b)

Fig. 2. lllustration of the network flux model. (a) Continuous case.
(b) Discrete case.
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From (3.1), we get F, = s(I*> — d?)/2d, which is indepen-
dent of the angle w. We let w — 0 and obtain that the flux at
each intermediate point F; is determined by the distance d
from the sink to that point and the distance ! from the sink
to the network boundary along the direction of that point

sink

(3.1)

Fy=s(*—d*)/2d. (3.2)

Formula 3.2 models the traffic flux for the ideal network
of infinite node density. For a more practical flux model, we
further generalize our analysis for the discrete networks.
Fig. 2b illustrates how the data flux concentrates at the k-
hop away nodes from the user. All k-hop nodes reside
inside the strip area k hop distant from the user and all
nodes beyond k hop away from the user (in the blue area)
have their data amount relayed by those k-hop nodes. Let
the flux at each k-hop node be F,. We have the entire
amount of data transmitted through those k-hop nodes is

B w(k*r? — (k-

1)%r2
M, = )77)
2

w( — (k—1)*r?

2
(3.3)

where r is the average distance of each hop, p is the node
density, and s is the traffic stretch of the current sink.

From (3.3), we get Fj, = s(I> — (k— 1)*r2)/(2k — 1)r2. We
can reformulate it and approximate Fj with items of real
distance variables

Fy = s(I*—d?)/2dr. (3.4)

Indeed, Formula 3.4 is a consistent representation of
Formula 3.2 in the discrete setting with a division factor of
the average hop distance r. According to Formula 3.4, the
position of the mobile user determines the parameters | and
d, thus affecting the traffic flux at intermediate nodes. Using
Formula 3.4, we are able to approximate the traffic flux at
any position for general discrete networks. On the other
hand, if we have the measurements of the traffic flux at each
node, Formula 3.4 allows us to identify the location of the
mobile user with a parameter fitting. Indeed, if we average
the amount of flux within the neighborhood of an
intermediate node, we are able to get a smoother map of
the network flux and better approximation accuracy by
mitigating the randomness of routing tree construction. In
Appendix B, available in the online supplemental material,
more statistical results on the accuracy of the network flux
model is presented.
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3.3 Briefing the Network Flux

According to the analysis in the previous section, with the
summary of traffic flux over the network we are able to
identify the location of the mobile user by simply extracting
the point of traffic concentration. The problem, however,
becomes a bit more difficult when there are multiple mobile
users initiating data collection at the same time. As Fig. 1
demonstrates, there are three mobile users collecting
network data with three different data collecting trees and
their traffics cumulate at intermediate nodes. Under such
circumstances, simply detecting the traffic peaks is not
effective any more. It is difficult to distinguish traffics of
different mobile users and the traffic flux of one mobile user
may heavily influence the observation on other mobile
users, especially when different mobile users have different
traffic stretches.

To address such a problem, we use a recursive method to
brief the observed network flux with our theoretical model.
We identify the positions of mobile users in multiple
rounds. In each round, we detect the global traffic peak and
accordingly identify the position of a mobile user. We then
estimate the traffic stretch of the mobile user with the peak
traffic. With the theoretical model, we are, thus, able to
approximate the network traffic flux associated with the
current mobile user. We then deduct the associated traffic
amount over the field from the originally observed network
flux map. By such a method, at each round, we can always
identify the location of a mobile user with dominating
traffic flux and then get the corresponding traffic deducted
from the network flux map. In Appendix C, available in the
online supplemental material, we demonstrate how the
method works for the example of Fig. 1.

Such a method, however, requires the flux information
over the network to capture the desired traffic peaks. Such a
requirement leads to expensive operational overhead, i.e.,
sniffing all the nodes within the entire network field.
Nevertheless, in next section, we show that we can
fingerprint the mobile users with only sparse samplings of
the network flux, significantly reducing the overhead of
launching the attack.

4 Fingerprinting with Sparse Samplings

Instead of acquiring the traffic flux information over the
entire network, we can merely use sparse samplings on a
small portion of nodes to get adequate fingerprint informa-
tion. We do a parameter fitting on our theoretical flux
model according to the node flux samplings over the
network such that we can find the best possible distribution
of mobile users. We further develop an algorithm that
iteratively approaches the mobile sink movements by
Sequential Monte Carlo Estimation technique.

4.1 NLS Parameter Fitting

With only sparse samplings from a small portion of nodes,
we are not able to directly map those traffic peaks of mobile
users. Instead, we do parameter fitting on our theoretical flux
model such that the flux measurements can be the best fit.
Assume that we have the flux samplings at n nodes
which are evenly distributed across the field. From the
theoretical model indicated by Formula 3.4, we can
estimate the flux vector F' at sampling nodes and compare

with the real measurement vector F’. The best parameter
fitting corresponds to a Nonlinear Least Squares (NLS)
optimization problem, which will minimize the following
objective function:

min.|F — F'||
K 2 2
s (2. —d2)
FL — _/ . 2,7 1,]
].:Zl r 2d“
dij = d(zi, yi, ), Yj)-

p=1,2,...
7(l )&y 7”)7 (41)

Here, F; describes the estimated flux amount at the ith
node according to the flux model, where the traffic of K
mobile users cumulates. The estimated value F; is deter-
mined by the positions of mobile users (z;,y;), and their
traffic stretches s;. We try to fix such parameters as the
solution € R*X for this optimization problem. Indeed, the
number of mobile users K is not necessarily preknown. For
the cases where we do not know the exact number of mobile
users in the field, we can conservatively choose a K large
enough, and after the optimization process the K coordi-
nates will converge at the actual positions of mobile users.
There is an unknown constant r in the function which
measures the average distance of each communication hop.
In practice, r is limited by the maximum communication
radius R, but is different under different network densities.
Nevertheless, we take s;/r as an integrated factor and fit its
value. Directly applying numerical techniques to solve the
above NLS problem is not feasible in some situations, where
the objective function may not be differentiable.

As a matter of fact, the shape of the network boundary
determines our function of calculating /; ;. A nondifferenti-
able network boundary, say, a rectangular field, usually
leads to the nondifferentiable objective function. Traditional
numerical techniques like the Gauss-Newton method or the
Levenberg-Marquardt method [14] all require the objective
function to be differentiable, thus not applicable in those
cases. On the other hand, the direct solution of the NLS
problem is not always a stable estimation of the locations of
mobile users, due to the measurement errors and model
prediction errors. The estimated locations may largely vary
between consecutive estimations with different instances of
flux observations.

Against such challenges, we propose to approach the
mobile user movement with sequential samplings. Under
the NLS constraints, we can efficiently filter those outlier
samplings and keep a good approximation. With the
Sequential Monte Carlo Sampling technique, we are able
to cumulate our prior observations on network flux and get
constantly refined estimation accuracy.

4.2 Sequential Monte Carlo Estimation

In our problem, for each mobile user i, there exists a time
series of data collections [ti,t}, ..., t};] corresponding to the
sequence of its positions [p!,ph,...,pl.]. The Sequential
Monte Carlo method allows us to represent the real position
of the mobile user pj at each instance j with a set of random
samples. Those samples are updated iteratively with the
importance sampling method. Through the prediction and
filtering operations in each round of update, we are able to
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restrict the samples to the posterior distribution of the
mobile user’s possible positions.

Let ¢ be the discrete time instances. For mobile user i, it
corresponds to the time series of data collections
[ti,t,....t.]. Let p, represent the position distribution at
time ¢. We can predict the current position distribution of
the mobile user from its previous position, i.e., P(p:|p;—1)-
On the other hand, according to our observations on the
network flux we get the likelihood of the mobile user’s
current position with the observation constraints, i.e.,
P(pi|o;). With sequential observations on the network flux
evolutions, we iteratively approach the posterior distribu-
tion P(pilo1,09,...,0;). At each stage, we use a set of N
random samples P, to approximate the position distribution
pr. We accordingly update the set of samples as the
observed network flux pattern evolves. At each time
instance ¢, P, is computed with the previous approximation
P,_; and the current observation o;.

4.3 Prediction and Filtering

Initially, without any knowledge and constraints on the
position of the mobile user we assume a uniform distribu-
tion and select the samples uniformly random over the
field. At each time step, we predict the possible positions of
the mobile sink based on the transition distribution
P(pi|pi-1) and get updated position samples. We then
eliminate those predictive samples inconsistent with net-
work flux observations in a filtering phase. In such a
process, the sampling distribution gradually approaches the
posterior distribution P(p;|o1, 02, ..., 0t).

In the prediction phase, we get the updated set of
samples P, from the previous set P,_;. We assume a weak
model to predict the movement of the mobile user, i.e., we
do not have any specific information on its mobility pattern
(speed, direction, trajectory, etc.) except the knowledge of
its maximum moving speed vy.,. Thus, from any sample
position in the previous step P,_;(i), the possible current
position P,(4) is uniform random within a circular region of
radius v, - At, where At is the time interval between the
two consecutive time instances

1
VR ifd s Pt— é Umax * At
F(Ulnax ] At)2 f (Pt 23 1) a

0’ Z.f d(phptfl) > Unmax * At.
(4.2)

P(Pt|Pt71) =

After the prediction phase, there are N new samples
drawn randomly from the discs centered at previous
sample origins, corresponding to increased uncertainty on
the movement of the mobile user. Indeed, above mobility
model can be further refined if we have more accurate
mobility prediction, say, the heading of the mobile user.

In the filtering phase, we eliminate those impossible
position samples from P, to cut down the uncertainty due to
the unawareness of mobility. The filtering operation is
bound to our network flux observations. For each mobile
user ¢, we estimate the incurred network flux when it is at
any of the N possible updated positions. We sum up the flux
amounts incurred by all K mobile users and obtain the
estimated flux vector F for the n sampling nodes. For all NX
possible combinations of the mobile user positions, we
estimate the flux vector F' and compare it with the real
measurement F’. Since there still exists freedom on the

traffic stretches of mobile users, we take s;/r(j = 1,2,..., K)
as integrated factors and fit their values to minimize
|E'— F'||. We are then able to find minimized objective
value ||F — F'|| for each possible combination of the mobile
user positions, with specific traffic stretch factor s;/r. Such
observations allow us to filter out those position combina-
tions apart from real measurements by their objective
values. We rank the N possible updated positions for each
mobile user i, according to their minimum objective values
each of which is achieved in N*¥~! possible combinations.
Finally, we keep the top M updated positions for each
mobile user and filter out the other possible positions.

4.4 Asynchronous Updating

Recall that in our application context different mobile users
collect the updated data from the network at their own
wills. For any mobile sink ¢, there exists a time series of data
collections [ti,th, ... t..] which is independent with each
other. As a matter of fact, the observable updating of their
positions is by nature asynchronous. For each round of
observing the network flux some mobile users may not
happen to collect data from the network and there is a best
fit traffic stretch s;/r — 0 estimated for each of them in the
prediction and filtering phase. In such a case, we will not
update the position samples of those mobile users and
instead we allow a larger At for computing the transition
distribution P(p;|p;—1) in following rounds. As a result, the
samples of different mobile users are asynchronously
updated. For each mobile user i, the time interval At used
to calculate the movement radius v,,,, - At in Formula 4.2 is
the time period between two consecutive time points of
data collection #/ — /.

We can further improve the estimation process with
importance sampling and we give the details in Appendix D,
available in the online supplemental material. The pseudo-
code of the Sequential Monte Carlo Estimation is shown in
Appendix E, available in the online supplemental material.

5 COUNTERMEASURES

As the previous section demonstrates, with current data
collection style, the mobile users take high risk of leaking
their location privacy to malicious parties. In this section,
we further discuss such a problem and propose a set of
countermeasures to secure the location privacy of mobile
users.

5.1 Redistributing Network Traffic Flux

As the major source that exposes the locations of mobile
users is the network flux incurred during the data
collection, we change the data collection style and redis-
tribute the net work traffic flux. To redistribute the traffic
flux over the network, a straightforward idea is to let sensor
nodes distribute fake traffics across the network which are
meaningless to the application, but add extra traffic
amounts on top of existing traffic flux. In such a way, we
are able to hide the real traffic patterns with extra traffic
jamming from the malicious entities. However, the extra
traffic introduced by such a method is excessively high,
which will become a large overhead to the sensor network
and may overwhelm the regular operations, leading to
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extremely low networking efficiency. In order to neatly
address such an issue, we propose a light-weight ap-
proaches that significantly smoothen the network traffic
while maintain low extra traffic amount.

In existing method to build data collection trees, the hop
count is the sole metric used in the construction process.
Such data collection trees are optimal in terms of path
length, ie., each sensor node is connected through a
shortest path of minimum hop count to the mobile user,
but lead to apparent traffic flux distribution that can be
captured by the adversary party. In our scheme, when
building the data collection tree we let each sensor node
take both hop count metric and traffic flux metric into
consider. An arbitrary node in the network receives control
messages from its neighboring nodes, containing hop count
indicator h and traffic flux indicator f. The hop count
indicator h indicates the number of hop counts from the
node to the root along the data collection tree and the traffic
indicator f indicates the cumulated traffic flux along the
path from the current node to the root.

Consider node o receives the path indicators (hy, f1) and
(he, f2) from its neighbor nodes i and j separately. Node o
integrates both indicators to select the path. In this example,
the estimated values for the two paths are given by

%:(lfa)»hﬁra(}}ii;tj) - f1,

h1+ ho
Vo=(01-a) hy+ - fa,
= (=) bt a7 ) g
where the factor (hy + h2)/(f1 + f2) is used to normalize the
hop count indicator with the traffic flux indicator. Thus,
when there are N such path choices, the value for each path
is estimated as

N
V;f = (1 — 06) : hk"‘a(ZZj\_fl h7> : fk~

5.1
Zi:l fi ( )

In such a way, the two indicators of hop count and traffic
load are considered and weighted with a factor « € [0, 1],
which is adjustable according to the application needs, i.e.,
a larger a when smoother traffic flux distribution is
required and a smaller & when shorter data delivery path
is required. After the path is determined, the current node o
updates and passed downstream the two indicators h, =
hy+1 and f, = fr + T, where T, is the traffic amount
happened on node o.

As a result, when we integrate the traffic indicator into
consideration we do create smoother traffic flux distribution
over the field, shifting from the one that can be easily
captured by the network flux model. Sampling on such a
traffic distribution is, thus, unlikely to accurately calculate
mobile users’ locations, and the location privacy is pre-
served at some degree.

5.2 Reshaping Traffic Patterns

As the mobile users are moving within the network, we
may not necessarily deliver the data to their instant
locations. Instead, if we know or we can predict their
moving trajectories, we can let sensor nodes deliver their
data to ahead of the mobile users. In particular, we build
data collection trees rooted at a set of discrete sensor nodes

along the moving trajectory of each mobile user. We call
them hotspots. Data are first aggregated to those hotspots and
then the mobile user fetches the data from the hotspots when
he moves along the trajectory. In such a way, we will
average the data delivered to each mobile user along the
moving trajectory and, thus, reshape the traffic pattern
within the network.

When we build the data collection trees rooted at the
hotspots, we consider both hop count indicators as well as
traffic flux indicators, the same as what we describe in
Section 5.1. The only difference is that the hop count
indicator h is no longer associated with one root. Instead,
the indicator h at each node records the hop count to the
closest hotspot. In Appendix F, available in the online
supplemental material, we present the algorithm executed
at one mobile user. As a result, for each mobile user several
data collection trees rooted at different hotspots are built and
the data from an arbitrary sensor node are guaranteed to
deliver to one of those hotspots. The traffic pattern can be
further reshaped and averaged along the moving trajec-
tories of mobile users.

In Appendix G, available in the online supplemental
material, we give a further discussion on the effectiveness of
the proposed two countermeasures.

6 EVALUATIONS

We do extensive simulations to validate the effectiveness of
the discussed attack and countermeasure approaches. We
evaluate the accuracy of locating static users inside the
network with NLS parameter fitting and tracking mobile
users with Sequential Monte Carlo Estimation. We demon-
strate the results with various inputs and examine the
performance of the approach under different conditions.

In addition, we launch a trace driven experiment with
the movement logs of mobile users in Dartmouth Campus
data set [7] and evaluate the effectiveness of traffic
redistributing and reshaping techniques in protecting the
location privacy of mobile users. The detailed evaluation
results can be found in Appendix H, available in the online
supplemental material.

6.1 Instant Localization

To demonstrate the basic localization framework that we
provide with the fingerprint information of network flux,
we simulate a sensor network with 900 nodes on a 30 by 30
rectangular field. The sensor nodes are distributed over the
field in perturbed grids [4]. The communication radius for
each node is set to be 2.4, resulting in an average degree of
18. We simulate internal users within the field, collecting
sensory data from the network. The traffic stretch of each
user is randomly selected from 1 to 3. As described in
Section 4.1, by doing the NLS fitting on the traffic flux over
the network, we are able to approximate the locations of all
internal users that are collecting data from the network.

In Fig. 3, we evaluate the localization accuracy of our
NLS fitting-based approach with varied settings. We vary
the percentage of sensor nodes that provide us flux
samplings, testing the effectiveness of this approach with
sparse inputs. For each percentage level, we randomly
select the percentage of sensor nodes from the network and
use their flux reports to calculate the locations of users.
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Fig. 3. Localization accuracy. (a) Against percentage of sampling nodes.
(b) Against network density.

In Fig. 3a, we show how the localization accuracy varies
with the percentage of sensor nodes we use. Consistent with
our intuition, as the percentage of sampling nodes drops,
the localization error increases. Nevertheless, the results
prove that our approach is robust with sparse inputs. The
localization error keeps low even when we only use the
reports from 10 percent nodes. A dramatic increase of error
happens when we further lower the usage of node
samplings to 5 percent. The localization accuracy does not
improve much when more than 40 percent nodes are
sampled and on the other hand the localization accuracy
dramatically decreases and becomes even unacceptable
when the sampling nodes decrease below 5 percent . The
number of simultaneous internal users affects the localiza-
tion error. When we employ 10 percent nodes, our approach
achieves localization error of 1.23 for one user, 1.52 for two
users, 2.01 for four users and much increased 2.94 for eight
users. We then vary the number of nodes deployed in the
field from 900 to 1,800, resulting in different network
densities. For this set of simulation, the node reports we use
is fixed at 90. As Fig. 3b depicts, when the number of
sampling nodes is fixed the localization error decreases as
the network density rises. That is probably because in a
denser network the proposed network flux model approx-
imates the real network traffic more accurately, as we
previously discussed in Section 3. The impact of network
density, however, is fairly limited. The localization error
does not significantly change with the network density.

6.2 Tracking Mobile Users

In this simulation, we let mobile users move within the field
and track their moving trajectories by our Sequential Monte
Carlo Estimation-based approach. The basic settings are the
same as previous ones. In the Monte Carlo sampling process,
we select N = 1,000 random samples every time and keep
the top M = 10 samples as the updated representatives for
the location of each user. At this stage, we assume that all
mobile users simultaneously collect data with the same time
interval, so we are able to test how accurate our approach
will work with the complex traffic pattern assembled with
multiple users. The maximum moving speed of each user is
restricted below 5 per detection interval At, resulting in a
resampling area of radius 5 each round.

We test the accuracy of our approach with different
percentage of flux samplings and against different net-
work densities. We measure the error of the location
estimation of each user in the final round and depict the
results in Fig. 4. We vary the number of mobile users from
one to eight. As shown in Fig. 4a, the tracking accuracy
does not vary much until the percentage of sampling
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3l —©-4users @g\x\n\'
——8 users
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Fig. 4. Tracking accuracy. (a) Against percentage of sampling nodes.
(b) Against network density.

nodes drops below 5 percent, which is consistent with
what we observe in the localization scenario. Although a
large number of flux samplings help to provide high
accuracy, using only 10 percent nodes still provides us
acceptable accuracy. In Fig. 4b, we depict how the
tracking error varies with the network densities. The
number of nodes deployed in the field is varied from 900
to 1,800 and the node reports we use is fixed at 90. Similar
with the situation in the localization scenario, the network
density does not significantly affect the tracking accuracy,
although a denser network provides more accurate
approximation with the network flux model.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that the mobile users within
a sensor network take the risk of leaking their location
privacy. The network flux provides external malicious
entities fingerprint information about the mobile users
inside the network. We propose a flux model that
approximates the network flux within the network. We
demonstrate that through passively sniffing a small set of
nodes in the network, the external adversary can easily
locate the mobile users and track their movement. This
study reveals the potential threat in protecting the location
privacy of mobile users from malicious entities. We then
explore a set of traffic redistribution and reshaping
methods and propose the countermeasures against such
malicious attacks. The trace driven experiments suggest
that the proposed approach effectively protect the location
privacy from malicious attacks. A particular assumption
we make throughout this paper is that the malicious
sniffing spots are evenly distributed across the entire field,
which might be a constraint to the attackers. We plan to
investigate this problem and study how uneven sniffing
over the field will work in future works.
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