
2318 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 10, NO. 10, OCTOBER 2021

CLNet: Complex Input Lightweight Neural Network Designed
for Massive MIMO CSI Feedback
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Abstract—The Massive Multiple Input Multiple Output
(MIMO) system is a core technology of the next generation
communication. With the growing complexity of CSI, CSI
feedback in massive MIMO system has become a bottleneck
problem. Recently, numerous deep learning-based CSI feedback
approaches demonstrate their efficiency and potential. However,
most existing methods improve accuracy at the cost of com-
putational complexity by adding more advanced deep learning
blocks. This letter presents a novel neural network CLNet tai-
lored for CSI feedback problem based on the intrinsic properties
of CSI. CLNet proposes a forged complex-valued input layer
to process signals and utilizes spatial-attention to enhance the
performance of the network. The experiment result shows that
CLNet outperforms the state-of-the-art method by average accu-
racy improvement of 5.41% in both outdoor and indoor scenarios
with average 24.1% less computational overhead. Codes are
available at GitHub.1

Index Terms—Massive MIMO, FDD, CSI feedback, deep learn-
ing, complex neural network, attention mechanism, lightweight
model.

I. INTRODUCTION

THE MASSIVE multiple-input multiple-output (MIMO)
technology is considered one of the core technologies

of the next generation communication system, e.g., 5G. By
equipping a large number of antennas, the base station (BS)
can sufficiently utilize spatial diversity to improve the channel
capacity. Especially, by enabling beamforming, a 5G BS can
concentrate signal energy to a specific user equipment (UE)
to achieve higher signal-to-noise ratio (SNR), less interference
leakage and hence, higher channel capacity. However, beam-
forming is possibly conducted by the BS only when it has the
channel state information (CSI) of the downlink at hand [1].

In frequency division duplexing (FDD) mode that most con-
temporary cellular systems operate in, the channel reciprocity
does not exist. Therefore, the UE would have to explicitly feed
back the downlink CSI to the BS, and the pilot-aided training
overhead grows quadratically with the number of transmit-
ting antennas, which might overturn the benefit of Massive
MIMO itself [2]. Thus, CSI compression is needed before the
feedback to reduce the overhead.
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Traditional compressive sensing (CS) based methods rely
heavily on channel sparsity and are limited by their efficiency
in iteratively reconstructing the signals. Their performance is
highly dependent on the wireless channel [3], and thus is not
a desirable approach considering the diversified use cases of
5G networks.

The recent rapid development of deep learning (DL) tech-
nologies provides another possible solution for efficient CSI
feedback in FDD massive MIMO system. Instead of relying
on sparsity, the DL approaches utilize the auto-encoder frame-
work [4]. The encoder learns a map to the low-dimensional
compressed space and the decoder reconstruct the original data
by a single run without the labeled data. It naturally over-
comes the limits of CS-based approaches in channel sparsity
and operation efficiency.

The first DL-based method, CsiNet [5], explored and
demonstrated the efficiency of deep learning in CSI feedback.
CsiNet significantly outperforms the traditional CS-based
methods (LASSO, BM3D-AMP and TVAL3) under various
compression rates.

Based on CsiNet, most of the subsequent DL-based meth-
ods utilize more powerful DL building blocks to achieve
better performance with the sacrifice of computational over-
head. CsiNet-LSTM [6] and Attention-CSI [7] introduced
LSTM that significantly increases the computational over-
head. CsiNet+ [8] comprehensively surveyed recent DL-based
methods and proposed a parallel multiple-rate compression
framework. The computational overhead of CsiNet+ is approx-
imately x7 higher than the original CsiNet [9]. Recently,
some methods start to reduce the complexity, for example,
JCNet [10] and BcsiNet [11], however, their performance has
also been reduced. So far, only CRNet [12] has outperformed
CsiNet without increasing the computational complexity.

However, CSI or signals are represented in complex
envelopes, which have their own physical meaning that is over-
looked by previous works, only [13] considered this problem
by adopting complex-valued three dimensional convolutional
neural network [14]. However, as the complex kernel is hard
to optimize through back-propagation, the network is hard to
train and the computational complexity is inevitably greatly
increased. Considering the limited computational resource and
limited storage at UE side, this letter proposes a tailored DL
network that can cope with complex number yet maintain
lightweight, CLNet, for CSI feedback problem. Eventually,
CLNet outperforms CRNet with 5.41% higher accuracy and
24.1% less complexity on average. The main contributions are
summarized as follows.

• CLNet proposes a simple yet effective way to organic
integrate the real and imaginary parts into the real-valued
neural network models.

2162-2345 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on May 09,2023 at 02:09:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6615-1982
https://orcid.org/0000-0002-6047-9709


JI AND LI: CLNet: COMPLEX INPUT LIGHTWEIGHT NEURAL NETWORK DESIGNED FOR MASSIVE MIMO CSI FEEDBACK 2319

• CLNet adopts spatial attention mechanism to let the DL
model focus on the more informative clustered signal
parts.

II. SYSTEM MODEL AND PRELIMINARY

Consider a single cell FDD system using massive MIMO
with Nt antennas at BS, where Nt � 1 and Nr antennas at
UE side (Nr equals to 1 for simplicity). The received signal
y ∈ C

Nc×1 can be expressed as

y = Ax + z (1)

where Nc indicates the number of subcarriers, x ∈ C
Nc×1

indicates the transmitted symbols, and z ∈ C
Nc×1 is the

complex additive Gaussian noise. A can be expressed as
diag(hH1 p1, . . . , h

H
Nc

pNc
), where hi ∈ C

Nt×1 and pi ∈
C
Nt×1, i ∈ {1, . . . ,Nc} represent the downlink channel

coefficients and beamforming precoding vector for subcarrier
i, respectively.

In order to derive the beamforming precoding vector pi , the
BS needs the knowledge of corresponding channel coefficient
hi , which is fed back by the UE. Suppose that the downlink
channel matrix is H = [h1 · · · hNc

]H which contains NcNt

elements. The number of parameters that need to be fed back
is 2NcNt , including the real and imaginary parts of the CSI,
which is proportional to the number of antennas.

Because the channel matrix H is often sparse in the angular-
delay domain. By 2D discrete Fourier transform (DFT),
the original form of spatial-frequency domain CSI can be
converted into the angular-delay domain, such that

H ′ = F cHFH
t (2)

where F c and F t are the DFT matrices with dimension Nc×
Nc and Nt × Nt , respectively. For the angular-delay domain
channel matrix H ′, every element corresponds to a certain
path delay with a certain angle of arrival (AoA). In H ′, only
the first Na rows contain useful information, while the rest
rows represent the paths with larger propagation delays are
made up of near-zero values, can be omitted without much
information loss. Let H a denote the informative rows of H ′.

H a is input into UE’s encoder to produce the codeword v
according to a given compression ratio η such that

v = fE (H a ,ΘE ) (3)

where fE denotes the encoding process and ΘE represents a
set of parameters of the encoder.

Once the BS receives the codeword v, the decoder is used
to reconstruct the channel by

Ĥ a = fD(v ,ΘD) (4)

where fD denotes the decoding process and ΘD represents a
set of parameters of the decoder. Therefore, the entire feedback
process can be expressed as

Ĥ a = fD(fE (H a ,ΘE ),ΘD) (5)

The goal of CLNet is to minimize the difference between
the original H a and the reconstructed Ĥ a , which can be

Fig. 1. The encoder and decoder architecture of CLNet.

expressed formally as finding the parameter sets of encoder
and decoder satisfying

(
Θ̂E , Θ̂D

)
= argmin

ΘE ,ΘD
‖H a − fD(fE (H a ,ΘE ),ΘD)‖22 (6)

III. CLNET DESIGN

This section presents the design of the CLNet and its
key components. Figure 1 depicts the overall architecture of
CLNet, in which traditional convolution blocks are omitted for
simplicity. Overall, CLNet is an encoder-decoder framework
with four main building blocks that are tailored for the CSI
feedback problem.

The performance of the CSI feedback scheme highly
depends on the compression part, the encoder. The less
information loss of the compression, the higher the decompres-
sion accuracy can be obtained. Due to the limited computing
power and storage space of UE, deepening the encoder
network design is not practical. Therefore, CLNet leverages
the physical characteristics of CSI to achieve a lightweight
yet informative encoder by two tailored blocks.

First, CSI is the channel frequency response with com-
plex values that depict channel coefficients of different signal
paths. The previous DL-based CSI feedback methods treat the
real and imaginary parts of the CSI separately. Instead, the
input CSI in CLNet first goes through the forged complex-
valued input layer that embeds the real and imaginary parts
together to preserve the physical information of the CSI
(Section III-A). Second, different signal paths have differ-
ent resolutions of cluster effect in the angular-delay domain,
which corresponding to different angles of arrival and differ-
ent path delays. Thus, we introduce the CBAM block [15] that
serves as spatial-wise attention to force the neural network
focus on those clusters and suppress the unnecessary parts
(Section III-B).

Since the encoder becomes more powerful, the decoder
can be correspondingly more lightweight, thus CLNet mod-
ifies the CRBlocks [12] in decoder by reducing the filter size
from 1 × 9 to 1 × 3. To further reduce the computational
cost, CLNet adopts the hard-Sigmoid activation fuction which
is more hardware friendly than the conventional Sigmoid
activation function (Section III-C).

A. Forged Complex-Valued Input

CSI is complex-valued channel coefficients such that:

H (t) =
N∑

k=1

ak (t)e
−jθk (t) (7)
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Fig. 2. Diagrammatic comparison of the conventional convolution and the
CLNet forged complex-valued input layer.

where N is the number of signal paths. ak (t) and θk (t) indi-
cate the signal attenuation and propagation phase rotation of
the k-th path at time t, respectively. The BS relies on the phys-
ical meaning of CSI, the norm of real and imaginary parts
describes the channel’s attenuation to signal and the ratio of
the real and the imaginary part describes the channel’s phase
rotation to the signal, to conduct the beamforming.

Since a typical deep learning neural network is designed
based on real-valued inputs, operations, and representations.
Existing DL-based CSI feedback methods simply separate the
real and imaginary parts of the complex values as two indepen-
dent channels of an image as the neural network input, which
may destroy the original physical property of each complex-
valued channel coefficient. Specifically, as Figure 2 (a) depicts,
a conventional 3 × 3 kernel size entangles the real and imag-
inary parts of neighboring elements in H a , and as a result,
the 9 complex CSI are interpolated as one synthesized value.

Mathematically, F tr : H a → I is a convolutional transfor-
mation. Here, H a ∈ R

Na×Na×2 is a 3D tensor, extended
from its 2D version by including an additional dimension
to separately express the real and imaginary parts, and I ∈
R
Na×Na×C , where C indicates the number of convolutional

filters applied to learn different weighted representations. The
output of F tr is I = [i1, i2, . . . , iC ], ic ∈ R

Na×Na . Let
an + bn i denotes a CSI and wn is the learnable weight
of a convolutional filter f. The 3x3 convolution operation
essentially is the sum of two multiplication such that:

i1(1, 1) = [a1, . . . , a9] · [w1, . . . ,w9] + [b1, . . . , b9] · [w1, . . . ,w9]

(8)

In such way, the real and imaginary parts of the same
complex-valued signal are decoupled and different CSI met-
rics are mixed, thus losing the original physical information
carried by the channel matrix.

The insight of CLNet is that by utilizing a 1× 1 point-wise
convolution, the real and imaginary parts of a complex-valued
coefficient can be explicitly embedded such that:

i1(1, 1) = [a1] · [w1] + [b1] · [w1] (9)

where the ratio between a and b is preserved, thus maintain the
phase information and the amplitude of the signal be scaled by
w. Since CNN shares the weight w, so the entire CSI matrix’s
amplitude is essentially scaled by the same w, the relative
amplitude across subchannels is also preserved.

The output ic , essentially, is a weighted representation of
the original H a and different filters learn different weighted
representations, among which, some may be more impor-
tant than others. Based on this, CLNet further adopts the

Fig. 3. Operation illustration of spatial-wise attention of CLNet.

SE block [16], which serves as the channel-wise attention in
the forged complex-valued input layer. It assists the neural
network to model the relationship of the weights so as to focus
on the important features and suppress the unnecessary ones.
A diagram of the SE block is shown in Figure 2 (b) with
annotation F se .

The output I first goes through F sq transformation by
global average pooling to obtain the channel-wise statistics
descriptor z ∈ R

C . Here, F sq expands the neural network
receptive field to the whole angular-delay domain to obtain
the global statistical information, compensating the shortcom-
ing of the insufficient local receptive field of 1 × 1 convolution
used in the first step of the forged complex-valued input layer.

After that, the channel descriptor z goes through F ex trans-
formation, i.e., a gated layer with sigmoid activation to learn
the nonlinear interaction as well as the non-mutually-exclusive
relationship between channels, such that

s = F ex (z ,W ) = σ(g(z ,W )) = σ(W 2δ(W 1z )), (10)

where δ is the ReLU function, W 1 ∈ R
C
2
×C and W 2 ∈

R
C×C

2 . F ex further explicitly models the inter-channel
dependencies based on z and obtains the calibrated s, which is
the attention vector that summarizes all the characteristics of
channel C , including intra-channel and inter-channel depen-
dencies. Before being fed into the next layer, each channel of
I is scaled by the corresponding attention value, such that

Ĩ:,:,i = F scale(s, I) = siI:,:,i , s. t. i ∈ {1, 2, . . . ,C} (11)

Ĩ ∈ R
Na×Na×C is the final output of the forged

complex-valued input layer, which preserves the CSI physi-
cal information while capturing dynamics by the channel-wise
attention mechanism.

B. Attention Mechanism for Informative Encoder

On the other hand, in angular-delay domain, the channel
coefficients exhibit the effect of clusters with different reso-
lutions that correspond to the distinguishable paths that arrive
with specific delays and AoAs. In order to pay more attention
to such clusters, CLNet employs a CBAM block [15] to serve
as spatial-wise attention to distinguish them with weights in
the spatial domain as Figure 3 illustrates.

Based on the cluster effect in the angular-delay domain,
spatial-wise attention uses the generated spatial statistical
descriptors as the basis for assigning weights, forcing the
network to focus more on the distinguishable propagation
paths.

First, two pooling operations, i.e., average-pooling and max-
pooling, are adopted across the input F i ’s channel C to
generate two 2D feature maps, F avg ∈ R

Na×Na×1 and
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Fig. 4. Comparison between Sigmoid and hard-Sigmoid functions.

Fmax ∈ R
Na×Na×1, respectively. CLNet concatenates the

two feature maps to generate a compressed spatial feature
descriptor Fdsc ∈ R

Na×Na×2, and convolves it with a stan-
dard convolution layer to produce a 2D spatial attention mask
Fmask ∈ R

Na×Na×1. The mask is activated by Sigmoid and
then multiplied with the original feature maps F i to obtain
Fo with spatial-wise attention.

Fo = CBAM(F i )

= F i (σ(f c([ AvgPool(F i );MaxPool(F i )])))

= F i
(
σ
(
f c

([
F avg;Fmax

])))
(12)

With spatial-wise attention, CLNet focuses the neural network
on the more informative signal propagation paths in the
angular-delay domain.

C. Reduction of Computational Cost

The often-used Sigmoid activation function contains expo-
nential operation:

σ(x ) =
1

1 + e−x =
ex

ex + 1
. (13)

In order to reduce time cost in the computation, CLNet uses
the hard version of Sigmoid, its piece-wise linear analogy
function, denoted as hσ to replace the Sigmoid function [17],

hσ(x ) =
min(max(x + 3, 0), 6)

6
(14)

Figure 4 compares the excitation curves of the hard-
Sigmoid and Sigmoid functions. The hard-Sigmoid induces no
discernible degradation in accuracy but benefits from its com-
putational advantage of entailing no exponential calculations.
In practice, the hard-Sigmoid can fit in most software and
hardware frameworks and can mitigate the potential numerical
quantization loss introduced by different hardware.

IV. EVALUATION

This section presents the detailed experiment setting and the
comparison with the state-of-the-art (SOTA) DL-based CSI
feedback approach, in terms of accuracy and computational
overhead.

1) Data Generation: To ensure a fair performance compar-
ison, we use the same dataset as provided in the first work of
DL-based Massive MIMO CSI feedback in [5], which is also
used in later studies on this problem [6], [7], [8], [9], [12].
The generated CSI matrices are converted to angular-delay
domain H a ∈ R

32×32×2 by 2D-DFT. The total 150,000
independently generated CSI are split into three parts, i.e.,
100,000 for training, 30,000 for validation, and 20,000 for
testing, respectively.

2) Training Scheme and Evaluation Metric: The normal-
ized mean square error (NMSE) between the original H a and
the reconstructed Ĥ a is used to evaluate the network accuracy:

NMSE = E
{
‖H a − Ĥ a‖22/‖H a‖22

}
(15)

The complexity is measured by the flops (floating-point oper-
ations per second). The model was trained with the batch
size of 200 and 8 workers on a single NVIDIA 2080Ti
GPU. The epoch is set to 1000, as recommended in previous
work [8], [12]. To further ensure the fairness, we fix the
random seed of the computer.

3) CLNet Overall Performance: Table I shows the over-
all performance comparison among the proposed CLNet and
related CSI feedback networks.

As for the complexity, generally, the LSTM-based networks
(CSINet+ and Attn-CSI) require approximate five to seven-
flods higher computational resources than the CNN-based
networks (CSINet, CRNet2 and CLNet). Furthermore, because
LSTM’s operation relies on the previous output as the input
of the hidden layer and does not share parameters for paral-
lel computation, it is difficult to reduce the complexity even
if the compression rate increases. As shown in Table I, the
CLNet is the lightest among all networks. Compared with the
SOTA CRNet, the CLNet significantly reduces the computa-
tional complexity by 24.1% less flops on average. The flops
of CLNet is 18.00%, 22.35%, 25.20%, 26.50%, 28.36% less
than CRNet at the compression ratio η of 1/64, 1/32, 1/16,
1/8, 1/4, respectively. As the compression rate increases, the
computational complexity degrades more.

In Table I, turn to the accuracy part, the best results in the
lightweight network are shown in bold, and the best results
in all networks are shown in italics. The result shows that
CLNet consistently outperforms other lightweight networks at
all compression ratios in both indoor and outdoor scenarios
with 5.41% overall average improvement compared with the
SOTA CRNet.3 In indoor scenarios, CLNet obtains an aver-
age performance increase of 6.61%, with the most increase of
21.00% at the compression ratio of η = 1/4. In outdoor sce-
narios, the average improvement on NMSE is 4.21%, with the
most increase of 10.44% at the compression ratio of η = 1/32.
Compared to heavyweight networks, CLNet still achieves the
best results at the compression ratio of 1/4, outperforming the
second place CSINet+ by 6.54% and 3.87% in indoor and
outdoor scenario, respectively. CLNet also achieves the best
result in indoor scenario at the compression ratio equals to
1/64.

4) Ablation Study: Considering the limited interpretabil-
ity of deep neural network, we further conduct the ablation
study to better quantify the gain of the proposed forged
complex-valued input layer and spatial-attention mechanism.
The epochs of ablation studies are set to 500 in indoor sce-
narios, the rest settings remain the same as discussed in
Section IV(1-2). Baseline is the CRNet with conventional
convolution.

2Note that the CRNet paper reported flops is corrected by [13].
3We reproduce CRNet follow the open source code:

https://github.com/Kylin9511/CRNet the higher performance they reported in
the paper are from training with 2500 epoch.
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TABLE I
NMSE(DB)a AND COMPLEXITY COMPARISON BETWEEN SERIES OF CSI FEEDBACK NETWORK AND THE PROPOSED CLNET

TABLE II
NMSE (DB) COMPARISON OF ABLATION STUDY

TABLE III
DETAILED COMPLEXITY OF CRNET AND CLNET

As Table II shown, by simply modifying the first layer from
a conventional convolution layer to an 1x1 convolution as the
forged complex input layer,its accuracy surpasses the base-
line at all compression ratios with an average improvement
of 10.964%, which demonstrates the efficacy of appropri-
ately preserving the complex notation. After adding the SE
block, the accuracy is slightly improved although there is no
improvement at η = 1/8. The last two columns show that the
spatial-attention slightly improves the accuracy at low com-
pression rates, however, when combined with the SE block,
its accuracy is further improved by 3.058% on average.

5) Encoder Complexity: Table III reveals that the CLNet
encoder is actually slightly heavier than that of CRNet.
However, the BS may need to execute several different models
at the same time so a relatively light decoder would also be
beneficial. In terms of storage space, CLNet and CRNet are
roughly the same.

V. CONCLUSION

This letter studies the CSI feedback problem for mas-
sive MIMO under FDD mode, which is the key technology
of 5G communication systems. Based on the understand-
ing of the physical properties of the CSI data, a novel
customized deep learning framework, CLNet, is proposed.
The forged complex-valued input layer preserves the ampli-
tude and phase information of the signal and enhances with
spatial-attention mechanisms. The hard-Sigmoid function is

adopted to eliminate the exponential calculations. The over-
all performance of CLNet has 5.41% higher accuracy than
the state-of-the-art CRNet with 24.10% less computation
overhead.
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