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Abstract

This paper proposes a spatiotemporal deep learning frame-
work, Trajectory-based Graph Neural Network (TrGNN), that
mines the underlying causality of flows from historical vehi-
cle trajectories and incorporates that into road traffic predic-
tion. The vehicle trajectory transition patterns are studied to
explicitly model the spatial traffic demand via graph propa-
gation along the road network; an attention mechanism is de-
signed to learn the temporal dependencies based on neighbor-
hood traffic status; and finally, a fusion of multi-step predic-
tion is integrated into the graph neural network design. The
proposed approach is evaluated with a real-world trajectory
dataset. Experiment results show that the proposed TrGNN
model achieves over 5% error reduction when compared with
the state-of-the-art approaches across all metrics for normal
traffic, and up to 14% for atypical traffic during peak hours or
abnormal events. The advantage of trajectory transitions es-
pecially manifest itself in inferring high fluctuation of flows
as well as non-recurrent flow patterns.

1 Introduction
Robust and accurate predictions of vehicular traffic condi-
tions (e.g., flow, speed, density), either short-term or long-
term, is necessary for transportation services such as traffic
control and route planning. The challenge of traffic predic-
tion primarily stems from the complex nature of spatiotem-
poral interactions among vehicles and the road network.

Data driven approaches have been extensively exploited
in predicting vehicular traffic on the road network. Early
attempts leverage time series analysis (Williams and Hoel
2003), which primarily models the temporal correlations of
traffic. Conventional machine learning models (Sun, Zhang,
and Yu 2006) are applied to learn the spatiotemporal correla-
tions of traffic from historical data. Latest works apply deep
learning to traffic prediction, and they typically follow a spa-
tiotemporal framework, e.g., Graph Neural Network (GNN)
(Li et al. 2018), which demonstrates superior capability in
learning complicated spatiotemporal correlations.
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Figure 1: The challenge in predicting non-recurrent traffic
flows and how vehicle trajectory information may help.

According to studies in transportation domain (Skabardo-
nis, Varaiya, and Petty 2003), the road traffic contains two
parts: recurrent traffic, which often arises from periodic traf-
fic demand such as daily commuters during morning and
evening rush hours, and non-recurrent traffic, which is trig-
gered by unexpected causes such as public transit disrup-
tions or accidents. Existing approaches learn spatiotemporal
traffic correlations from patterns that were seen in history,
and thus are favourable in predicting recurrent traffic. In pre-
dicting non-recurrent traffic, however, existing approaches
may fail to achieve the same level of accuracy, mainly due to
insufficient observations of similar flow patterns in history.
Figure 1(a) illustrates such an issue with an example - when
only flow observations (i.e., the number of vehicles passing
each road segment) are available, existing approaches may
learn spatiotemporal correlations of recurrent flow patterns
among different road segments across different time, which
cannot effectively reason how a previously unseen part of
the traffic is credited to future road traffic.

This paper targets at addressing the current challenge
with non-recurrent traffic flow prediction - the challenge that
historical flow data cannot provide insights on how non-
recurrent traffic flows correlate in time and space. Thus,
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complementary to conventional spatiotemporal modeling
using aggregated traffic flow observations, we also exploit
intact vehicle trajectories to infer short-term traffic depen-
dency. As suggested in Figure 1(b), trajectory data provide
information of how each portion of a traffic flow transits
from one road segment to another, and thus implies the de-
pendency of upstream and downstream flows. The depen-
dency embeds knowledge of how downstream traffic are
caused by upstream traffic and thus may help infer traffic
flow patterns that have not been seen before.

Incorporating trajectories to traffic flow prediction entails
the following challenges: 1) trajectories are only observed
from historical data; 2) traffic patterns at trajectory level
need be aggregated properly to reflect the traffic patterns
at flow level; and 3) future flows may deviate from ob-
served patterns due to influence from the environment. To
address those challenges, this paper proposes a novel model,
Trajectory-based Graph Neural Network (TrGNN), which
learns trajectory transition patterns from historical trajecto-
ries and incorporates that into a spatiotemporal graph-based
deep learning framework. The main contributions of this pa-
per are summarized as follows:
• We identify the challenge of predicting non-recurrent traf-

fic flows, and we propose to incorporate vehicle trajectory
data in traffic flow prediction. To the best of our knowl-
edge, this is the first study that attempts to leverage ve-
hicle trajectory data to mine the underlying causality of
flows among roads.

• We design an end-to-end spatiotemporal graph-based
deep learning model to predict traffic flows of the entire
road network. Our model embeds trajectory transition into
graph propagation along the road network to model the
spatial traffic demand; it learns the temporal dependen-
cies with an attention mechanism based on neighborhood
traffic status; and finally it fuses multi-step predictions.

• We conduct extensive experiments 1 with real-world vehi-
cle trajectory data and the results suggest that our model
outperforms state-of-the-art approaches in terms of pre-
diction errors across various scenarios (over 5% error
reduction), and is especially superior in predicting non-
recurrent flow patterns, e.g., during abnormal events (up
to 14% error reduction).
The rest of the paper is organized as follows. Section 2

discusses related work on vehicular traffic prediction. Sec-
tion 3 defines the problem and introduces some preliminary
knowledge. The proposed model TrGNN is introduced in
Section 4, and experimentally evaluated in Section 5. Sec-
tion 6 concludes the paper.

2 Related Work
For decades, data driven approaches have been exploited to
predict road traffic conditions, such as flow (Lv et al. 2014),
speed (Li et al. 2018), density (Raj, Bahuleyan, and Vana-
jakshi 2016), accident rate (Sun and Sun 2015), and arrival
time (Zhou, Zheng, and Li 2012).

1Code and dummy data are available at
https://github.com/mingqian000/TrGNN.

Early attempts with time series analysis model the tempo-
ral correlations of traffic, such as SARIMA (Williams and
Hoel 2003) and VAR (Chandra and Al-Deek 2009). Those
approaches rely on strong assumptions of linearity and sta-
tionarity and often ignore the spatial impact from neighbor-
ing traffic. Another line of research focuses on studies of
conventional machine learning models, such as k-NN (Davis
and Nihan 1991), Bayesian network (Sun, Zhang, and Yu
2006), and SVR (Vanajakshi and Rilett 2004). In those mod-
els, spatiotemporal features are manually designed and ex-
tracted, and the models are often shallow in structure with
limited learning capability.

Recent advances in deep learning have motivated its ap-
plication in traffic prediction (Liu et al. 2018). Earlier neu-
ral network architectures include SAEs (Lv et al. 2014) and
DBN (Jia, Wu, and Du 2016). State-of-the-art approaches
typically follow a spatiotemporal framework: it models the
spatial correlations by CNNs (Yu, Yin, and Zhu 2018) view-
ing the map as an image, or by GCNs (Li et al. 2018) view-
ing the road network as a graph; and it models the tem-
poral evolution of traffic as a sequence of signals (Zhao
et al. 2019). The spatiotemporal framework makes it flexible
to embed auxiliary information such as weather conditions
(Yao et al. 2018), accident data (Yu et al. 2017), map query
records (Liao et al. 2018), and POIs (Geng et al. 2019). Sim-
ilar to these works, our model follows a graph-based spa-
tiotemporal deep learning framework; in addition, we incor-
porate vehicle trajectory data into the design to address the
challenge of predicting non-recurrent flows.

Among deep learning approaches, Graph Wavenet (Wu
et al. 2019) and SLC (Zhang et al. 2020) mine latent graph
structures to capture long-range dependencies, and MRes-
RGNN (Chen et al. 2019) designs a multiple hop scheme
to capture long-term periodic patterns; the design goals of
those methods deviate from our key objective of predicting
non-recurrent traffic which is often caused by sudden dis-
ruptions locally. Other methods explore temporal building
blocks and combine them with graph convolution, e.g., at-
tention in ASTGCN (Guo et al. 2019) and GMAN (Zheng
et al. 2020), gated recurrent unit in T-GCN (Zhao et al.
2019), temporal convolution in STGCN (Yu, Yin, and Zhu
2018). Most of these methods aim at reducing overall predic-
tion errors without specific focus on non-recurrent traffic.

Few existing works leverage trajectory data in traffic flow
prediction. Zhang et al. leverages trajectories in traffic state
estimation, only to calibrate the embedding of road intersec-
tions (2019). In comparison, our work utilizes trajectories to
mine the traffic flow transitions among road segments. Some
work leverages trajectories for other purposes such as map
generation (Ruan et al. 2020) which is less relevant to the
topic of our study.

3 Preliminaries

We first define the problem of traffic flow prediction, and
then introduce some preliminary knowledge of Graph Con-
volutional Networks (GCNs) and attention mechanism.
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3.1 Problem Definition
In traffic flow prediction, the target is to predict future traffic
flows given historical traffic flows on a static road network.
Definition 1 (Road Graph). The road network can be for-
mulated into a directed road graph G = (V, E , A). V =
{vi}i=1,2,...,M is a finite set of nodes where each node vi
represents a road segment i, and E = {eij} is a set of di-
rected edges where each edge eij = (vi, vj) indicates that
road segment i is an immediate upstream of road segment j,
andA ∈ [0, 1]

M×M represents the weighted road adjacency
matrix. Each node vi has a self-loop, i.e., eii ∈ E .
Definition 2 (Traffic Flows). Traffic flow is defined as the
number of vehicles passing by a road segment during a spe-
cific time interval. Given a road graph G = (V, E , A), we
use X ∈ RT×|V| to represent the time series of traffic flows,
where for each interval t = 1, 2, ..., T ,Xt ∈ R|V| represents
the traffic flows of all road segments in the road network dur-
ing time interval t.
Definition 3 (Trajectory). Given a road graph G =
(V, E , A), we use T = (v1, v2, ..., vI) to represent a tra-
jectory of a vehicle, where each vi ∈ V represents a road
segment in the trajectory, satisfying (vi, vi+1) ∈ E , vi 6=
vi+1, ∀i = 1, 2, ..., I − 1.
Problem 1 (Traffic Flow Prediction). Given a road graph
G = (V, E , A), find a prediction function f̂ with parameter
Θ such that given traffic flows X(t−Tin+1):t within a histor-
ical window period Tin up to time interval t, f̂ estimates the
most likely traffic flows X̂t+1 for the next time interval t+1,
i.e.,

X̂t+1 := f̂Θ(Xt−Tin+1, ..., Xt)

≈ arg max
Xt+1

log p(Xt+1|X(t−Tin+1):t),
(1)

3.2 Graph Convolutional Networks (GCNs)
To model the spatial traffic demand, we leverage the idea of
graph propagation from GCNs.

A GCN is defined over a graph G = (V, E , A). It ap-
plies convolutional operations on graph signals in spectral
domain (Kipf and Welling 2017; Defferrard, Bresson, and
Vandergheynst 2016). Given a graph signal X ∈ R|V|×N
where N is the number of features, a typical formulation of
a K-hop graph convolutional layer is

GCNG(X;W, θ) = σ(
K∑

k=0

θkL
kX)W (2)

where L ∈ [0, 1]
|V|×|V| is the graph Laplacian, a variant of

A, to control the graph propagation across nodes; θ ∈ RK

controls the fusion of different hops; W ∈ RN×M (M is
the output feature dimension) controls the fusion of different
features; and σ is the activation function.

In this paper, to model traffic demand and traffic status, we
adopt graph propagation (GraphProp), a simplified variant
of GCN, with one single input feature (i.e., traffic flow) and
thus ignoring the feature-wise parameters W :

GraphProp(X,A;K) := [X‖AX‖A2X‖...‖AKX]. (3)

Instead of directly learning θ to fuse different hops of traf-
fic demand, we define an attention mechanism to learn the
temporal weights, as illustrated in Section 3.3.

3.3 Attention Mechanism
In learning a weighted sum of values, an attention mecha-
nism (Vaswani et al. 2017; Veličković et al. 2018) replaces
the weight parameters with a learning module in which the
same set of parameters (called keys) are shared across all
values in calculating the weights. A typical formulation of
an attention mechanism given queries Q ∈ RN×dk , keys
K ∈ RM×dk and values V ∈ RM×dv is

Attention(Q,K, V ) := softmax(QKᵀ)V. (4)

In this paper, we apply the attention mechanism for a more
flexible fusion of traffic demand based on traffic status.

4 Methodology
In this section, we introduce our proposed model, TrGNN,
to address the problem of traffic flow prediction (Problem
1). The model follows a spatiotemporal framework, leverag-
ing trajectory transition patterns. The extraction of trajectory
transition is illustrated in Figure 2. An overview of the model
architecture is illustrated in Figure 3. We elaborate each part
of the architecture in the subsections below.

4.1 Trajectory Transition
Figure 1 illustrates the extra information gain from historical
trajectory data when inferring non-recurrent traffic patterns.
Compared to flows, trajectories provide essential knowledge
about drives’ origin and destination (O-D), and help infer
their choices of routes at road intersections. Figure 1(b)
visualizes a contrast between green and dark red trajecto-
ries, which indicates that vehicles coming from different up-
stream road segments (or origins) may differ in their dis-
tributions of downstream road segments (or destinations).
Hence, for non-recurrent traffic patterns, we may infer flows
on a trajectory basis: first obtain the origins of the existing
vehicles, and then based on their origins, infer the distribu-
tion of their destinations. In Figure 1(b), for example, we
may infer that the extra spike of flow is more likely caused
by extra vehicle flow of dark red trajectories instead of green
trajectories.

We utilize historical trajectories to explicitly model the
transition of flows between upstream and downstream road
segments. Figure 2 illustrates the extraction of trajectory
transition. We view historical trajectories as Markov pro-
cesses, and by aggregating trajectories of all vehicles, we
may infer the transition of flows from one road segment to
others. The rest of this subsection elaborates the extraction
of trajectory transition.

The trajectory generation of a vehicle can be modeled as
a first-order Markov process, assuming that the transition
probability from each upstream road segment to each down-
stream road segment is stationary across days. We define a
trajectory transition tensor P ∈ RTd×|V|×|V|, where each
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Figure 2: Learning trajectory transition from historical trajectories.

Pt ∈ R|V|×|V| represents the trajectory transition probabili-
ties for the tth time interval of the day. The trajectory gener-
ation process can be represented as

P (T |t) = P ((v1, v2, ..., vI)|t)

= π(v1)
I−1∏
i=1

P (vi+1|vi; t)

= π(v1)
I−1∏
i=1

Pt,vi,vi+1
.

(5)

Alternatively, P can be derived from a higher-order Markov
process, which would require larger sample size and higher
computational complexity.

To estimate tensor P , we collect historical trajectories of
all vehicles from the training set, and aggregate the cumu-
lative transition probability with respect to time of day, up-
stream road segment, and downstream road segment:

P̂t,vi,vj =
#vehicles (vi → vj |t) + 1[vj ∈ N(vi)]

#vehicles(vi|t) + ‖N(vi)‖
, (6)

where t stands for the tth time interval of day, and N(vi)
denotes the set of downstream neighbors of road segment
vi. To mitigate data sparsity, P̂ is smoothed out by adding a
constant 1 for any pair of consecutive road segments.

The trajectory transition tensor P summarizes the proba-
bility distribution of drivers’ choices of routes. In a macro-
scopic view, it approximates the transition of flows from
upstream to downstream road segments in near future, and
serves as a lookup table in the proposed TrGNN model.

4.2 Spatial Modeling of Traffic Demand
Based on trajectory transition, we design a graph propaga-
tion mechanism to infer the traffic demand in the spatial
domain. Traffic demand refers to the short-range and long-
range destinations of existing vehicles on the road network.

We leverage graph propagation from Graph Convolu-
tional Networks (Section 3.2) to simulate the transition of
vehicles along the road network. We perform graph propa-
gation in d hops, resulting in a graph of traffic demand for
each hop. For each input time interval t, we can derive traffic

demand Dt ∈ R|V|×(d+1) via graph propagation:

Dt = GraphProp(Xt,Pᵀ
t ; d)

= [Xt ‖ Pᵀ
t Xt ‖ (Pᵀ

t )2Xt ‖ ... ‖ (Pᵀ
t )dXt],

(7)

where ‖ denotes concatenation, ·ᵀ denotes matrix transpose,
and parameter d stands for demand hop, controlling the far-
thest possible destination.

The graph propagation simulates the propagation of flows
along the road network, and as a result, the traffic demand
D is an aggregation of the short-range and long-range desti-
nations (in different hops) of all vehicles in existing flows.

4.3 Temporal Modeling of Traffic Demand based
on Traffic Status

The modeling of traffic demand in Section 4.2, however,
does not consider the propagation speed of flows, which
should depend on traffic status. Traffic status refers to the
overall traffic volume in the neighborhood of each road seg-
ment. If the traffic status is congested around a road seg-
ment (i.e., high volume of flows in the neighboring road
segments), the propagation of flows along that road segment
should be slow, and vice versa.

A temporal module is thus designed to infer how each
hop of traffic demand, from short range to long range, corre-
sponds to the future traffic flow in the targeted time interval.
This is done by assigning a weight to each hop of traffic
demand via an attention mechanism (Section 3.3) based on
traffic status. Thus, we first obtain traffic status, and then
build an attention mechanism based on traffic status.

For each input time interval t, we obtain traffic status
St ∈ R|V|×(2s+1−1) via graph propagation in s hops from
neighboring road segments. The graph propagation is done
via dual random walk to incorporate both upstream and
downstream traffic:

St = GraphPropdual(Xt, Ã; s)

= [Xt ‖ ÃᵀXt ‖ ÃXt ‖ ÃᵀÃᵀXt ‖ ... ‖ ÃsXt],
(8)

where Ã is a normalized variant of the weighted road adja-
cency matrix A, and parameter s stands for status hop, con-
trolling the radius of the neighborhood.

297



Predicted flows !

Graph Propagation Traffic demand "#

Graph Propagation
Multi-step fusion

t+1

t

Predicted flows $

Traffic status %#

Trajectory transition &

Road-wise

Temporal

AttentionHistorical flows '

Road adjacency (

t

t

t

Figure 3: Trajectory-based Graph Neural Networks (TrGNN). The framework models spatial traffic demand via graph propaga-
tion based on trajectory transition, and models temporal dependencies via attention mechanism based on neighborhood traffic
status. The final prediction is a fusion of multi-step prediction.

We apply a road-wise attention mechanism (referring to
the dot-product attention in (Vaswani et al. 2017)) param-
eterized by keys K ∈ R|V|×(2s+1−1)×(d+1), taking traffic
status St as queries and traffic demand Dt as values, to as-
sign weights α ∈ [0, 1]

|V|×(d+1) to different hops in traffic
demand Dt and take the weighted sum as an initial predic-
tion of flows Ht ∈ R|V|:

Ht = Attention(St, Dt;K)

=
d∑

i=0

α:,i �Dt,:,i

=
d∑

i=0

[softmax(St ◦K)]:,i �Dt,:,i

(9)

where softmax(·) is applied over the dimension of demand
hop, ◦ denotes road-wise matrix product, and � denotes
element-wise (or Hadamard) product.

4.4 Multi-Step Fusion
From a sequence of input flows {Xi}i=t−Tin+1,...,t, we ob-
tain a sequence of initial predictions H ∈ RTin×|V|. The
final layer of the model is a temporal fusion of H . We adopt
a road-wise fully connected layer. For each road segment v,

yv := Xt+1,v

= FullyConnected(H:,v; Θ)

= ΘᵀH:,v.

(10)

Alternatively, this layer can be replaced by any RNN cell
such as LSTM (Hochreiter and Schmidhuber 1997) or GRU
(Chung et al. 2014)), or sequence modeling (Sutskever,
Vinyals, and Le 2014), for a longer-term prediction.

As a side note, the conservation of vehicles on the road
network does not hold in practice. Future flows not only de-
pend on trajectory transition within the road network, but

also depend on new vehicles entering the road network (e.g.,
entering from the boundary of the region, or entering from
a local road to an arterial road) and existing vehicles leav-
ing the road network, which we call boundary flows. Since
the boundary flows are strongly associated with drivers’ O-D
demand which is periodic, we embed some periodic features
(e.g., time of day, is working day) into the multi-step fusion
module to model the boundary flows.

5 Experimental Evaluation
5.1 Dataset Description
We evaluate our model with SG-TAXI, a real-world dataset
comprising GPS mobility traces from over 20,000 taxis
in Singapore. The dataset is provided by Singapore Land
Transport Authority. We collect the GPS readings of all ac-
tive taxis for a period of 8 weeks (14th Mar-8th May 2016).
Each GPS reading comprises vehicle id, longitude, latitude,
and timestamp. The road network comprises 2,404 road seg-
ments, covering all expressways in Singapore.

5.2 Data Preprocessing
We preprocess the SG-TAXI dataset in 4 steps:
1. Road graph formulation. For the road graph G =

(V, E , A), we calculate the weighted road adjacency ma-
trixA as the exponential decay of distance between roads.

2. Map matching. We apply the Hidden Markov map
matching algorithm (Newson and Krumm 2009) to cor-
rect GPS readings to their corresponding road segments.

3. Trajectory cleansing. Given a sequence of mapped GPS
points, we cleanse the vehicle’s trajectory as follows: 1)
eliminate duplicate records; 2) if GPS reading is off for
over 10 minutes (e.g., the driver turns off the sensing de-
vice), split the trajectory; 3) if driver stays on the same
road segment for over 2 minutes, split the trajectory; 4) if
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no path exists between two consecutive GPS points (e.g.,
driver drives off the road network), split the trajectory;
and 5) remove GPS points with extreme speed (i.e., speed
derived from two consecutive GPS points exceeds 120
km/hr). Finally, we recover the full trajectory via Dijk-
stra’s algorithm (Dijkstra et al. 1959).

4. Flow aggregation. We aggregate trajectories into flows
per road segment per 15-minute interval. We calibrate
flows to correct the daily fluctuation in taxi arrangement
and better represent the overall traffic flows in Singapore.

5.3 Experiment Settings
The model is trained on the preprocessed SG-TAXI dataset.
The train-validate-test split is 5-1-2 week. Each data point
consists of input flows for 4 intervals (i.e., 1 hour) and output
flows for 1 interval (i.e., 15 minute). Flows are normalized
before being input into the model. For hyperparameters, the
demand hop d is set to 75, i.e., the maximum number of road
segments that a vehicle with a normal speed could traverse
within a 15-minute interval, and the status hop s is set to 3.

The model is implemented in PyTorch (Paszke et al. 2019)
on a single Tesla P100 GPU and is trained using Adam op-
timizer (Kingma and Ba 2014) to minimize MSE loss. The
learning rate is initially set to 0.004 and is halved every 30
epochs. The maximum epochs to train is set to 100. Early
stopping is applied on validation MAE. The training takes
less than 4GB RAM and less than 1GB GPU memory.

5.4 Baseline Approaches
Our model TrGNN is compared to representative baseline
methods of each type, including naive methods (HA, MA),
time series analysis (VAR), conventional machine learn-
ing (RF), and deep learning (T-GCN, STGCN, DCRNN).
Specifically, (i) HA (Historical Average) is the average flow
of the same time on the same day in the past four weeks;
(ii) MA (Moving Average) is the average flow of the pre-
vious 1 hour; (iii) VAR (Vector Auto-Regression) (Hamil-
ton 1994) models the future flow as a linear combination
of historical flows in 5-hop neighborhood, implemented in
StatsModels (Seabold and Perktold 2010); (iv) RF (Random
Forest) is a decision-tree-based ensemble method that fits a
piece-wise function on historical flows in 5-hop neighbor-
hood, implemented in Scikit-learn (Pedregosa et al. 2011)
with 100 trees; (vi) T-GCN (Temporal Graph Convolutional
Network) (Zhao et al. 2019) is a graph-based neural net-
work that integrates GCN with GRU, implemented in Ten-
sorflow 2; (vii) STGCN (Spatio-Temporal Graph Convolu-
tional Networks) (Yu, Yin, and Zhu 2018) is a graph-based
neural network that models both spatial and temporal de-
pendencies via convolution, implemented in Pytorch 3; and
(viii) DCRNN (Diffusion Convolutional Recurrent Neural
Network) (Li et al. 2018) is a graph-based neural network
that integrates diffusion convolution on graph with sequence
learning, implemented in PyTorch 4.

2https://github.com/lehaifeng/T-GCN
3https://github.com/FelixOpolka/STGCN-PyTorch
4https://github.com/chnsh/DCRNN PyTorch

5.5 Evaluation Metrics
We evaluate prediction results by three error metrics: MAE
(Mean Absolute Error), MAPE (Mean Absolute Percentage
Error), and RMSE (Root Mean Squared Error), same as in
(Li et al. 2018). Lower errors indicate better performance.

5.6 Results and Analysis
Table 1 summarizes the evaluation of different approaches
for traffic flow prediction on SG-TAXI dataset. The com-
parison covers overall testing as well as specific scenarios
including peak hours, non-peak hours and MRT breakdown.

Overall Performance. According to Table 1, the overall
prediction errors of our model TrGNN are 26.43/0.30/38.65
vph for MAE/MAPE/RMSE, and TrGNN achieves over 5%
error reduction from baselines across all metrics. The naive
baselines generally give high errors, as they consider only
temporal correlations of flows; MA is more accurate than
HA, indicating that near-past flows play a stronger role than
periodicity. VAR and RF perform better than the naive base-
lines, as they incorporate neighborhood flows to model spa-
tial correlations; in particular, RF performs better than VAR,
implying that flows are not linearly correlated. For deep
learning, DCRNN achieves the best results out of all base-
lines, indicating the capability of graph-based deep learning
in capturing the spatiotemporal correlations. Finally, TrGNN
outperforms all existing baselines in all metrics, which veri-
fies the effectiveness of learning spatiotemporal transition of
flows from trajectories.

The line plot in Figure 4 visualizes predicted flows of
TrGNN and a few representative baselines. HA fits the worst
to the ground truths, implying high variation of flows from
week to week; while TrGNN and DCRNN are more sensi-
tive to the real-time fluctuations of flows. If we look further
into the peak hours indicated in the dashed box, TrGNN cap-
tures the fluctuations of flows slightly earlier than DCRNN.

Peak hours and non-peak hours. We select two typi-
cal periods for experiments: peak hours (8-10pm on work-
ing days, when public transport services become limited and
the demand for taxis increases, thus with high fluctuation of
flows); and non-peak hours (2-4pm on working days when
people stay at offices and the demand for taxis stabilizes,
thus with low fluctuation of flows). Results are summarized
in Table 1 (under “Peak hours” and “Non-peak hours” col-
umn). In peak hours, absolute errors (MAE/RMSE) are con-
sistently higher than in overall testing; while in non-peak
hours, the results are the opposite. This meets our expecta-
tion, as predicting peak hour flows is more challenging due
to higher fluctuation in traffic demand. In both peak hours
and non-peak hours, TrGNN outperforms all baselines, and
the error reduction of TrGNN is more significant during
peak hours (6-13% reductions on the performance metrics).

Figure 4 displays the heatmap snapshots of the predic-
tion errors of HA, DCRNN and TrGNN on the entire road
network during selected peak hours. The color indicates in-
creasing prediction error from green to red. A comparison of
the heatmap snapshots suggests the robustness of TrGNN in
capturing the periodic fluctuation of flows in peak hours.

Abnormal event: MRT breakdown. We analyze an ab-
normal event in Singapore, an MRT (Mass Rapid Transit)
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Overall Peak hours Non-peak hours MRT breakdown
Method MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
HA 33.74 0.34 52.58 36.83 0.25 55.02 32.53 0.28 48.67 40.07 0.27 59.34
MA 31.55 0.35 47.69 36.14 0.26 53.18 28.18 0.27 39.41 44.85 0.30 71.43
VAR 29.27 0.33 43.22 34.23 0.24 49.71 28.10 0.26 39.28 40.68 0.27 64.41
RF 29.26 0.33 43.38 34.13 0.24 49.75 27.53 0.26 38.53 42.28 0.28 66.53
T-GCN 31.12 0.35 45.69 36.57 0.27 52.91 30.03 0.29 41.53 42.38 0.30 67.39
STGCN 29.88 0.33 44.51 34.86 0.24 50.86 27.94 0.27 39.05 42.19 0.28 66.40
DCRNN 29.01 0.31 43.12 33.74 0.25 48.88 27.75 0.27 38.74 40.39 0.28 64.28
TrGNN- 27.34 0.31 40.05 31.35 0.23 45.11 26.61 0.26 37.20 38.57 0.27 59.53
TrGNN 26.43 0.30 38.65 29.81 0.23 42.62 25.65 0.25 35.68 34.56 0.25 54.31
%diff -9% -5% -10% -12% -6% -13% -7% -4% -7% -14% -8% -8%
Numbers in bold denote the best baseline performance and the best performance.
%diff denotes the error reduction of TrGNN from the best baseline performance.

Table 1: Performance of different approaches for traffic flow prediction on SG-TAXI dataset.

HA DCRNN TrGNN

Non-peak hours Non-peak hoursPeak hours Peak hours

Prediction error (vph)

Figure 4: Line plot of predicted flows on the road network
over a working day, and heatmap snapshots of prediction
errors during peak hours.

breakdown, when train services were disrupted due to power
fault (Chew 2016). The disruption falls on a Monday night
lasting for more than one hour, and it affects 52 train stations
on 4 train lines, covering the whole area of west Singapore.
In Figure 5, the heatmap visualizes the abnormal spike of
flows of the affected region due to the increase in taxi de-
mand during the MRT breakdown period, and the line plot
visualizes the predicted flows on a sample abnormal road
segment - TrGNN fits the best to the ground truths.

We select road segments within a 3km neighborhood of
any affected train station, and summarize their prediction re-
sults during the breakdown period in Table 1 (under “MRT
breakdown” column). Compared to “Overall”, we observe a
significant increase in MAE for all baselines, ranging from
19% to 44%, which demonstrates the performance drop in
predicting abnormal flows. Nevertheless, TrGNN outper-
forms baselines by a significant error reduction of 14%. The
result suggests the capability of TrGNN in capturing the spa-
tiotemporal causality even for non-recurrent flow patterns,

Abnormal road segments 

at MRT breakdown

Figure 5: Heatmap of abnormal flows in west Singapore due
to MRT breakdown, and line plots of abnormal flows and
predicted flows on a road segment. In heatmap, the color
scale indicates the amount of extra flow compared to that of
a normal day.

instead of simply memorizing the historical flow patterns.
Component analysis: trajectory transition. To analyze

the utility of trajectories, we build a variant of TrGNN,
TrGNN-, that replaces trajectory transition by the static road
network. Results in Table 1 show that compared to TrGNN-
, TrGNN reduces the prediction errors on all metrics in all
scenarios, especially in MRT breakdown where MAE drops
from 38.57 vph to 34.56 vph. This verifies the effectiveness
of trajectory transition in capturing flow dependency.

6 Conclusion and Future Work
This paper proposes a spatiotemporal deep learning model,
Trajectory-based Graph Neural Network (TrGNN), to solve
the traffic flow prediction problem. The architecture lever-
ages historical trajectory transition as an input into the
graph-based deep learning framework. TrGNN is evaluated
on SG-TAXI dataset. Results show that TrGNN outperforms
state-of-the-art approaches, especially being superior in pre-
dicting non-recurrent traffic flows such as in MRT break-
down event. Potential future work includes expansion to a
higher-order Markov model, longer-term prediction, and op-
timization of computational complexity in extracting trajec-
tories. Moreover, our work points out a promising direction
in incorporating trajectory data into traffic prediction.
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