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Abstract—While the urban rail transit systems are playing
an increasingly important role in meeting the transportation
demands of people, the precise awareness of how the human
crowd is distributed within the urban rail transit system is
highly necessary, which serves to a range of important appli-
cations including emergency response, transit recommendation,
commercial valuation, etc. Most urban rail transit systems are
closed systems where once entered the travelers are free to move
around all stations that are connected into the system and are
difficult to track. In this paper, we attempt to estimate the
crowd distribution within the urban rail transit system based
only on the entrance and exit records of all the rail riders.
Specifically, we study Singapore MRT (Mass Rapid Transit) as
a vehicle and leverage the tap-in and tap-out records of the EZ-
Link transit cards to estimate the crowd distribution. Guided
by a key observation that the passenger inflows and arrival
flows at various MRT stations are spatio-temporally correlated
due to behavioral consistence of MRT riders, we design and
implement a machine learning based solution, CrowdAtlas, that
accurately estimates the crowd distribution within the MRT
system. Our trace-driven performance evaluation demonstrates
the effectiveness of CrowdAtlas.

I. INTRODUCTION

An urban rail transit system is generally an electric railway
system operating on an exclusive right-of-way [1], where
passengers can travel freely among stations in different lines.
In virtue of fast velocity and large capacity, the rail transit sys-
tems have become the most important urban public transporta-
tion service in recent years. Especially in many metropolises,
the average daily ridership has reached millions (e.g., ∼5
million in London [2] and ∼3.5 million in Singapore [3]).

Since travelers are free to move around all the stations once
they enter the transit system, it is essential to have a fine esti-
mation of how people are distributed within the transit system.
Such information is important to providing critical resilience
guarantees, e.g., emergency evacuation in response to railway
disruptions or terrorist attacks. It is also useful to other value-
add businesses, e.g., real-time transit recommendations based
on crowdedness, or commercial valuation with crowd flows.

In this paper, we attempt to accurately estimate the crowd
distribution within the urban rail transit system and take
Singapore MRT (Mass Rapid Transit) system as a vehicle to
study the problem. We collect one-year EZ-Link card data of
Singapore MRT, involving daily rides (from both tap in and
tap out) of 5 lines and 102 stations, totaling 1.2 billion records.
With those records, we specifically study the two major lines
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Fig. 1. A map of the two major MRT lines EW and NS.

(namely East-West line, or EW line, and North-South line, or
NS line) that span across the country and possess the heaviest
ridership (∼1.5 million rides take place on those two lines
everyday). Fig. 1 depicts a map of the two MRT lines and the
52 affiliated stations.

Achieving accurate estimation of crowd distribution in the
MRT, however, is challenging owing to the limited informa-
tion. With the EZ-Link card data we have the knowledge of
the riders that enter the MRT system, but the travelers are
free to move around all the stations. Fine reasoning the crowd
movement needs to overcome the uncertainties that arise from
the ride time and the trip destinations. Through analysis over
historical MRT trip data, we have a key observation that the
passenger inflows and arrival flows at various MRT stations
are spatio-temporally correlated due to behavioral consistence
of MRT riders.

Guided by the observation, we design and implement a
machine learning based solution, CrowdAtlas, that is able to
capture MRT riders’ transition probabilities and based on that
perform accurate online estimation of the crowd distribution.
In particular, CrowdAtlas builds a neural network model that
learns the flow correlation, i.e., the riders’ transition proba-
bilities among stations and across time from a high volume
of historical MRT trips. With the model and all the tap-
in records, the number of MRT riders at any MRT station
can thus be estimated by aggregating the riders transitioned
from all origin stations and from all past time beings. We
perform comprehensive evaluations with EZ-Link data traces.
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Fig. 2. Typical activities during a ride.

Our trace-driven evaluation results – the overall MAPE (Mean
Absolute Percentage Error) is less than 15%, suggest that
CrowdAtlas is able to produce accurate estimation of crowd
distribution for most stations.

II. PROBLEM FORMULATION

A passenger’s rail transit ride begins from tapping in at
the origin station. There are various travel and sojourn time
involved during the passenger’s stay within the MRT sys-
tem, which finally ends when the passenger taps out at the
destination station. Additionally, if the origin and destination
stations are in different lines, extra sojourn time is incurred at
the interchange stations. A sequence of these ride activities is
depicted in Fig. 2.

Suppose there are n stations S = {sj}(j = 1, 2, · · · , n)
for the rail transit system, and a passenger’s ride start time is
τ . Based on that, a station’s inflow is defined as the number
of passengers tapping in the station at time τ , which is a τ -
dependent variable. We regard the inflow set of all stations
I = {Iτj }(j = 1, 2, · · · , n) to be known, as generally these
inflows could be obtained by the MRT operator in real time.
Similarly, we can define a station’s outflow Oτ

′

j as the number
of passengers tapping out the station at time τ ′, which is also
obtained by the MRT operator every minute.

A station’s arrival flow is defined as the number of passen-
gers presently arriving at that station (from other stations).
The present number of passengers at each station can be
derived by summing inflow and arrival flow at the present
time as well as the sojourn passengers’ number at that station,
which can be derived from previous arrival flows minus
outflows (see §III-B for details). The goal is thus to estimate
a set of all stations’ arrival flows at present time t, i.e.,
A = {Atk}(t > τ ; k = 1, 2, · · · , n).

Special challenge comes from the nature of our problem –
to instantly estimate the crowd distribution at present time. To
estimate the arrival flow at time t, we do not have passengers’
tap-out records that take place after time t, i.e., we only
have the start information (time and station) of those open
trips. As a station’s arrival flow is brought by other stations’
inflows, we define transition probability pτtoa which describes
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Fig. 3. Ride time statistics from an MRT station EW1 to other stations.

the probability that a passenger arrives in station sa at time
t given the ride starts from station so at time τ(< t). The
relation between the two flow sets A and I is

Atk =

n∑
j=1

∫ t−

0

Iτj p
τt
jk dτ, ∀sk ∈ S. (1)

The transition probability for any individual passenger is
affected by his/her destination station sd as well as ride time
Tr (i.e., time spent in the rail transit system), which can be
described as a function pτtoa = f(sd, Tr). It is challenging
to accurately obtain pτtoa due to the uncertainties of both
destination sd and ride time Tr.

We collect a large-scale EZ-Link transit card data of all
Singapore MRT trips in a whole year, involving ∼2.8 million
average daily ridership among 5 lines and 149 stations. We
specifically study the two the major MRT lines – EW and NS
lines that involve 52 stations spanning across the country with
∼1.5 million rides everyday. Here we extract one month data
to illustrate and quantify the two uncertainties. Fig. 1 depicts
the two MRT lines, where each station is named in the format
of “line name + number” (e.g., EW15, or NS14). Transfers
may take place at 3 interchange stations marked in the figure
(i.e., NS1/EW24, EW13/NS25, and EW14/NS26).
Ride-Time Uncertainty. A passenger’s ride time Tr com-
prises several time periods between ride activities – walking
time, waiting time, travel time (as illustrated in Fig. 2). They
are affected by either passenger behaviors (e.g., walking speed,
shopping activities, waiting) or train scheduling (different
speeds and schedules). As a result, the ride time may vary
subject to an unknown distribution (Tr ∼ Fu1 (t)). For the
above two-line dataset, the maximum, minimum and median
ride times from a terminal station EW1 to all other stations
are depicted in Fig. 3 respectively (separately by EW/NS line).
The ride time variance is observed at each destination station
with a growing trend as the station interval increases. There
exists even higher variance when transfer is involved in the
trip due to the additional uncertainty of transfer time.
Destination Uncertainty. It is manifest that a passenger’s
destination station sd is unknown until his/her ride ends. Here
we concern the destinations of a batch of passengers who
depart from the same origin station, and we inspect if their
distribution is analytical by studying the MRT trips. Fig. 4 de-
picts the destination distributions of passengers departing from
two major stations of high inflows (EW15 and NS1/EW24)
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Fig. 4. Destination distributions from two representative stations during peak
and off-peak hours.
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Fig. 5. Passenger transitions between (a) a pair of stations in the same MRT
line, and (b) a pair of stations across different MRT lines.

in a peak hour 7:00-8:00 and an off-peak hour 12:00-13:00
respectively. The proportions of passengers ending at various
stations (on z axis) are projected to the map of the two MRT
lines (on the x-y plane). Comparing the destination distribution
from different origin stations and different start times, we
clearly see that the destinations are subject to another unknown
distribution among stations (sd ∼ Fu2 (s)), which suggests
both temporal and spatial variations. In addition, interchange
stations (e.g., NS1/EW24) with more travel diversities further
increase such uncertainty.

Key Observation. Instead of looking at the individual
ride behaviors with such high uncertainties, we attempt to
study the collective behaviors based on a large volume of
passengers. Through quantitative analysis on a number of
origin-destination station pairs, we observe spatio-temporal
correlations between their inflows and arrival flows. Fig. 5
depicts the proportions of passengers transitioned from EW15
to EW27 (within the same MRT line) and to NS14 (across two
MRT lines) over 5 different weekdays, where we see similar
temporal variations. The observation from Fig. 5 suggests
that the transition probability pτtoa between any pair of origin-
destination stations and across any time span τ→t might be
consistent across all days. In view of such an observation,

...

Fig. 6. Architecture of CrowdAtlas.

we attempt to build a machine learning model to learn such
transition probabilities among stations and across time from
the high volume of historical MRT trips.

III. CROWDATLAS DESIGN

Guided by the above real-world trace analysis, we design
CrowdAtlas for online estimation of the crowd distribution.
Fig. 6 sketches the architecture of CrowdAtlas, which com-
prises two major components.

Correlation Learning: It builds a neural network model to
learn the flow correlation among all stations, and consequently
derive the transition probabilities pτtoa between all pairs of MRT
stations from inflows to arrival flows. With a list of features
(start time, origin station, etc.) encoded as input, the model is
trained based on historical MRT trip data to output transition
probabilities between two stations over any time period.

Online Estimation: It takes the transition probabilities pτtoa
from the neural network model as input, and thus the passenger
number at any MRT station (i.e., crowd distribution) can be
estimated in real time based on its present inflow and the
arrival flow derived based on inflows from other stations and
at previous time beings as well as the transition probabilities
from those stations.

A. Correlation Learning with Neural Network

As mentioned above, the transition probability pτtoa can be
expressed as a function of two factors ride time and destination
(pτtoa = f(sd, Tr)), which cannot be directly derived due to
the uncertainty of both factors. Instead, we design a neural
network model to learn the transition probabilities between an
arbitrary pair of stations and at arbitrary time of a day from
flow correlation among historical MRT trip records.

Feature Extraction. pτtoa is determined by both ride start and
present arrival information (time and station). Here we name
the above four factors as start time, origin station, present time,
and present station. Note that the present station refers to the
station a passenger is presently arriving at or is about to arrive
at (if the passenger is presently on the MRT train). We acquire
training samples by transforming the MRT trip records with
ride start and end time, as well as the origin and destination
stations. Each MRT trip record [tap-in time, origin station,
tap-out time, destination station] is transformed to a training
sample of [start time, origin station, present time, present
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Fig. 7. The neural network model structure for transition probability learning.

station] (where the difference between train arrival time and
tap-out time is negligible for training with high volume of
data).

On this basis, we further derive delta time ∆t = present time
− start time for each record, and filter the records with ∆t ∈
[RTmin, RTmax] as training samples (RTmax and RTmin
are the reasonable maximum and minimum ride time among
stations shown in Fig. 3). For each training sample, we set
(start time, origin station, delta time) as input features of the
neural network, and take a passenger’s present station in the
record as the label. Accordingly, for a group of start time,
origin station and delta time, the output of neural network is
a distribution of transition probabilities to all stations that the
passenger probably arrives at present. In addition, to support
learning the correlation among stations in multiple lines, we
re-index all stations in a sequence with all interchange stations
in the front, followed by the rest of the stations by MRT lines.

Neural Network Structure. Fig. 7 depicts the neural network
structure, which is composed of an input layer, an output layer
and two hidden layers. To avoid the negative influence of
feature values on training weight changes, we conduct one-hot
encoding for each feature and the label. We use ReLU as the
activation function of the hidden layers to relieve the gradient
vanishing problem [4], and use softmax as the activation func-
tion of the output layer to generate probability distribution [5].
Finally, we adopt cross entropy as the loss function, which
indicates the closeness between two distributions [6], and set
Adam [7] as the optimizer.

B. Online Estimation of Crowd Distribution

Through learning with the neural network, transition prob-
abilities pτtjk between any two stations sj , sk ∈ S for any
time τ, t during MRT operation hours can be obtained from
the neural network at real time. For passengers starting from
any station sj and time τ , we can acquire the inflow Iτj by
counting the tap-in records. Accordingly, we can estimate the
distribution of passenger number Fn(r, t) at an arbitrary arrival
station sr in each minute t by Fn(r, t) = Iτj p

τt
jr. On this

basis, we can derive the present arrival flow of a station Atr
by aggregating the arriving passengers from different origin
stations in a given duration (the concerned start time for each

origin station τj depends on its travel time to the present
station). This can be expressed as

Atr =
t−1∑
τ=τj

n∑
j

F τn (r, t), ∀sr ∈ S, t > τ. (2)

To acquire a station sr’s total passenger number, its present
inflow Itr should be added. In addition, passengers who have
earlier arrived but not yet tapped out are also considered. We
obtain the outflow Oτ

′

r of station sr at time τ ′ ∈ [t−Ts, t−1]
by counting the tap-out records, where Ts is the maximum
sojourn time at the destination station. These passengers who
have tapped out should be removed from the arrival flows
{Aτ ′

r } during the above period. Therefore, the overall crowd
distribution among stations can be estimated by

FN (r, t) = Itr +Atr +

t−1∑
τ ′=t−Ts

(Aτ
′

r −Oτ
′

r ). (3)

IV. EXPERIMENTS

We conduct experimental study with EZ-link data traces to
evaluate the estimation performance of CrowdAtlas.

A. Data Preparation and Training

We collect one-year EZ-Link data of Singapore MRT trips,
and extract a dataset of ride records within the two major lines
EW and NS (as depicted in Fig. 1) for all evaluations below.
To reduce the data size, we only ratain 6 major fields of each
record – [origin station, tap-in date & time, destination station,
tap-out date & time]. As the total number of stations in the
two MRT lines is 52 and we conduct training in batches by
the hour of start time, the unit numbers of the input and output
layers are 192 and 52 respectively. On this basis, we set the
unit numbers of two hidden layers as 150 and 100. Each time
we take records on weekdays1 of two months for training and
records on the weekdays or weekends of the following week
for testing. The selected data of different dates will be shuffled
before they are input into the neural network. The training is
conducted for 200 epochs so that the loss function converges.

B. Trace-Driven Performance Evaluation

We extract EZ-link data traces of the testing days and infer
the passenger trajectories, through which we obtain a set of
derived ground truths, i.e., the crowd distribution among the
52 stations at any time being. The historical data provides
complete start and end information of all MRT trips that take
place before or after any given present time t. This allows us
to reconstruct the ground truth of crowd distribution with no
uncertainties in trip ride time and destinations.

We first study the neural network’s learning performance
by comparing CrowdAtlas estimation and the ground truth
of passengers from a same origin station and a given start
time. Fig. 8 gives the comparison results from two different
origin stations EW1 and EW15 on a typical testing weekday

1The passengers’ travel demand pattern on weekends might be different
from that on weekdays, which could be separately trained likewise.
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Fig. 8. Estimated and ground-truth passenger distributions of those departing
from EW1 and EW15 at 9:00 and 18:00 respectively.

during morning and evening peak hours of MRT. For the
passengers starting from EW1 and EW15, their distributions
among stations at 9:00 and 18:00 are depicted in Fig. 8(a)-8(d)
respectively. The number of passengers arriving at different
stations are plotted on z axis and projected to the MRT map
(on the x-y plane). Both the number estimated by CrowdAtlas
and that from the ground truth are depicted in each figure. We
see from all figures that the estimated distributions match the
ground truth very well.

We then study the temporal variation of the estimated
crowd distribution. To the best of our knowledge, there are
no other studies that can be applied to addressing the problem
of our concern. Thus we choose to compare with an alter-
native approach that we derive as a baseline – estimating
the distribution of transition probabilities based on Moving
Average (MA) [8]. Specifically, for transition probabilities pτtjk
of arbitrary pairs of MRT station j and k and between time τ
and t, we calculate mean values of the corresponding records
of the previous two-month weekdays.

We group the 52 MRT stations into 5 regions based on
their geographic locations [9], [10]. In Fig. 9, we visualize
the passenger number variance estimated by CrowdAtlas in
comparison with that of the ground truth and baseline at four
typical stations EW3, EW5, EW27, and NS14, respectively
in four regions (as marked in Fig. 1). Similarly, we select
the morning peak-hour period (8:00am to 9:00am) on the
same testing day. We see from the four figures that the
CrowdAtlas estimation curve is closest to the ground-truth
curve, outperforming the baseline in all cases. If we define
estimation accuracy = 1 − |ne − nt| /nt (ne and nt are the
estimated and ground-truth passenger numbers respectively),
the average estimation accuracy improvements over the four
stations are ranging from 10.9% to 25.6%, which suggests
high accuracy of CrowdAtlas estimations.

We adopt MAPE (Mean Absolute Percentage Error) to
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Fig. 9. Passenger number variances of typical stations in different regions.

TABLE I
MAPES (%) COMPARISON OF THE CROWD DISTRIBUTION ESTIMATION

ACROSS STATIONS IN TWO TYPICAL TIME PERIODS.

Region/Line Stations Baseline CrowdAtlas
30-min 60-min 30-min 60-min

Central Region EW7-EW22 29.398 28.570 18.231 17.487NS18-NS28

West Region EW23-EW29 34.230 30.190 17.650 16.679NS1-NS5

East Region EW1-EW6 26.133 27.970 10.811 14.231

North Region NS7-NS14 25.884 25.093 8.767 10.904

NE Region NS15-NS17 20.848 21.800 9.899 11.104

EW Line EW1-EW29 28.300 26.841 10.644 12.117

NS Line NS1-NS28 30.659 29.310 18.572 18.080

Overall EW1-EW29 29.077 27.985 14.222 14.921NS1-NS28

quantitatively measure the estimation accuracy in a time scale,

MAPE =
100%

T

∑
t

|(yt − ŷt)/yt| , (4)

where ŷt and yt (t = 1, 2, · · · , T ) are the estimated and
ground-truth passenger numbers at different time beings. Ta-
ble I gives the MAPEs statistics of both CrowdAtlas and the
baseline across different station region and line groups on
weekdays in 30 and 60 minutes respectively. We see that the
MAPEs of CrowdAtlas are much smaller compared with the
baseline for all stations, and their overall MAPEs are ∼14%
versus ∼28%.

V. RELATED WORK

There are some studies relevant to our topic, and we
summarize them as follows.

Passenger Behavior Study of Rail Transit System. Previous
works on the rail transit system attempted to estimate passen-
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ger’s travel time [11], plan their travel route [12], or analyze
the mobility patterns [13] based on the transit card records.
Some researchers further leverage cellular data collected from
passengers’ mobile phones to capture their travel routes and
transfer activities, and conduct estimation of crowd density
at stations [14], [15]. All existing studies, however, are only
able to extract passengers’ travel demands but not their present
statuses in real time. Most studies are based on historical
data only and with heuristic models. On the other hand,
emergency events like railway disruptions have been studied
in the transportation field, which mainly focuses on optimizing
the route design of bus bridging services in presence of rail
system failures [16], [17]. All existing studies assume that the
crowd distributions at disrupted stations are known. Our work
can produce accurate online estimation of crowd distribution
within the rail transit system, which differs from existing data
driven analytical studies and fills the gap of existing railway
disruption studies in the transportation field.

Machine Learning for Transport Analysis. Machine learn-
ing techniques have been applied to transport analysis and
prediction in recent years mainly due to their powerful ca-
pabilities in extracting hidden characteristics from historical
mobility data. For instance, traffic speed prediction has been
intensively studied by exploiting deep learning models includ-
ing LSTM [18], CNN [19] and combination of them [20].
Likewise, traffic flow prediction has also been studied based
on learning models like SAE [21] or CNN with grid parti-
tion [22]. In addition, reinforcement learning has been utilized
to control traffic lights for improved road utilization [23] and
dynamically reposition bikes for minimum customer loss [24].
Most existing studies, however, focus on road traffic learning.
In contrast, our learning objective within the rail transit system
is of a different purpose and more challenging, given that
less knowledge on the transport operation can be extracted
from the transit card data that only provides the start and end
information of the trips leaving the trip details empty.

VI. CONCLUSION

In this paper, guided by a key observation that the passenger
inflows and arrival flows at various MRT stations are spatio-
temporally correlated due to the behavioral consistence of
MRT riders, we design and implement CrowdAtlas, which
builds a neural network model to learn the passenger tran-
sitions among stations within the urban rail transit system
and based on that perform online estimation of the crowd
distribution. Comprehensive performance evaluations are done
with EZ-Link data traces that demonstrates CrowdAtlas’s high
accuracy and effectiveness.
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