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ABSTRACT
Wi-Fi localization and tracking face accuracy limitations dic-

tated by antenna count (for angle-of-arrival methods) and fre-

quency bandwidth (for time-of-arrival methods). This paper

presents mD-Track, a device-free Wi-Fi tracking system ca-

pable of jointly fusing information from as many dimensions

as possible to overcome the resolution limit of each individ-

ual dimension. Through a novel path separation algorithm,

mD-Track can resolve multipath at a much finer-grained

resolution, isolating signals reflected off targets of interest.

mD-Track can localize human passively at a high accuracy

with just a single Wi-Fi transceiver pair. mD-Track also in-

troduces novel methods to greatly streamline its estimation

algorithms, achieving real-time operation. We implement

mD-Track on bothWARP and cheap off-the-shelf commodity

Wi-Fi hardware, and evaluate its performance in different

indoor environments.
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Figure 1: Joint estimation in the (a) Time-of-Flight
(ToF) and Angle-of-Arrival (AoA) dimensions, (b) ToF,
AoA, and Doppler shift or Angle-of-Departure (AoD)
dimensions, which can separate incoming signals
more effectively.
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1 INTRODUCTION
Passive motion tracking without any device carried by or

attached to a person has been an exciting area of recent inter-

est, with important applications including security surveil-

lance [28], elderly care [4], and retail business [32]. Diverse

technologies have been proposed for localization and track-

ing including ultrasound [25], infrared [43, 44], cameras [14],

and LED visible light [15, 21, 22]. Among these technologies,

Wi-Fi based systems stand out as particularly promising due

to the pervasive availability of Wi-Fi access points (APs).

For device-free passive tracking, Wi-Fi based systems rely

on signal reflections off targets to extract essential motion

and location information. By its nature, passive tracking is

more challenging than localization of active wireless trans-

mitters, because reflected signals of interest are typically

orders of magnitude weaker than the direct-path signal, and

are typically superimposed with the strong direct-path signal

as well as signals reflected from walls, furniture, and other

nearby clutter. How to accurately resolve and identify the

weak signal reflected off a target of interest becomes a major

challenge for these systems.

https://doi.org/10.1145/3300061.3300133
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Recent progress in this area has explored many ways of

extracting different parameters of the wireless signal, such
as angle-of-arrival (AoA) and time-of-flight (ToF) [12, 30,

51] for localization and tracking. These approaches rely on

accurately estimating the AoA or ToF of each signal path,

and so when multiple paths have similar AoAs or ToFs, these

systems face fundamental difficulties resolving the paths to

obtain accurate parameter estimates.

Resolvability is determined by the number of antennas

(for AoA) and the transmission frequency bandwidth (for

ToF), respectively. So a straightforward way to improve AoA

resolution is to increase the number of antennas and radios,

which results in higher hardware cost. Improving ToF reso-

lution is harder, as Wi-Fi standards fix channel bandwidth.

Recent attempts to overcome these limitations include creat-

ing virtual antenna arrays by physically moving the antenna

and combining adjacent channels to form a larger bandwidth

with channel hopping [20, 47, 50, 53]. However, these meth-

ods may impose constraints on ongoing data communica-

tion that we seek to avoid here, such as the use of a wider

bandwidth channel in a situation where use of a narrower

bandwidth channel would be more favorable from a com-

munications standpoint. While other recent systems [18, 19]

jointly estimate AoA and ToF, they are inherently limited,

by design, to the two signal dimensions they can explore,

and have high computational complexity, so are not easily

scalable to higher dimensions.

In this work, rather than adding more antennas or increas-

ing channel bandwidth, we explore more dimensions of the

wireless signal itself. We illustrate the intuition behind this

idea in Fig. 1. Three signals arrive at the receiver simultane-

ously. Signals S1 and S2 are close in time and therefore cannot

be resolved by employing ToF. However, S1 and S2 can be

easily resolved with AoA, since their AoA difference is large.

Similarly, signals S1 and S3 cannot be separated with AoA,

but are resolvable with ToF. This concept extends to higher

dimensions as shown in Fig. 1(b), where the receiver jointly

estimates ToF, AoA, and a third signal parameter (Doppler

shift or Angle-of-Departure–AoD). Here S4 and S5 are close
to each other in both AoA and ToF, but since S4 is a signal
from a moving source, it exhibits a non-zero Doppler shift

that separates it from S5, a reflected signal from a static ob-

ject with zero Doppler shift. There is thus an opportunity

to improve signal resolvability by jointly exploiting infor-

mation from more signal dimensions, without changing the

resolution limit of any individual dimension.

This paper leverages the foregoing opportunity, describing

multi-Dimensional Track (mD-Track), a passive Wi-Fi track-

ing system that fuses information from multiple signal di-

mensions, significantly improving resolvability without re-

quiring a wider frequency bandwidth or a larger number

of antennas. mD-Track jointly estimates multi-dimensional

parameters simultaneously so that the respective parameters

corresponding to a single path can be easily associated with

that path, improving passive localization and tracking of the

motions of multiple targets simultaneously with only a sin-

gle transmitter-receiver pair. mD-Track makes the following

contributions:

1. Multi-dimensional signal estimator.mD-Track intro-

duces a signal processing structure (the multi-dimensional
estimator, shown in Fig. 3), that combines sources of infor-

mation from all available signal parameters into a single

metric. This structure serves as the building block in our

next algorithmic contribution.

2. Iterative path parameter refinement. Separating sig-
nals of close-by paths is challenging: reflected signals are

much weaker compared to the direct path signal, so it is dif-

ficult to accurately estimate their parameters in the presence

of interference from a strong direct path. To separate incom-

ing signals, mD-Track employs an iterative path parameter

refinement method during which the signals are iteratively

re-estimated, more accurately reconstructed, and then sub-

tracted from the received signal with refined parameters in

multiple rounds of estimation. This design recalls the struc-

ture of the Turbo Decoder [34] and also can be shown to be

an expectation maximization estimation algorithm.

3. Bounding computation for real time operation.While

multi-dimensional joint estimation helps to improve signal

resolvability and parameter estimation accuracy, the com-

putation required by the joint estimator increases exponen-

tially with the number of signal dimensions, making the

required amount of computation intractable for a real-time

system design. To address this challenge, we design a linear-

time estimator by exploiting a coordinate descent method

together with the expectation maximization algorithm to

reduce computational complexity significantly, making the

design practical for real-time operation (§3.3).

We implement mD-Track on both WARP and commercial

off-the-shelf (COTS)Wi-Fi APs. Our experimental evaluation

begins with a sensitivity analysis that analyses each signal

parameter, measuring the relative ability of different param-

eters to resolve signals. Head-to-head comparisons in param-

eter estimation and passive localization demonstrate 3.5×
accuracy improvements over the state-of-the-art SpotFi [19]

system. Further experiments measure the effect of adding

another signal dimension (Doppler shift) to mD-Track, show-

ing approximately a 3× accuracy improvement, in contrast

with a marginal 20% improvement from doubling the fre-

quency bandwidth. Experiments show that with the three

antennas available on the COTS Wi-Fi card, mD-Track can

resolve more than 10 signals and estimate the parameters of

each signal path accurately.



2 THEWIRELESS CHANNEL
Localization or motion tracking of a target relies on sepa-

rating superimposed signals and accurately estimating each

signal’s parameters. A wireless signal is characterized by

multi-dimensional parameters, each parameter providing us

a piece of location or motion information about the target.

Fig. 2 summarizes the parameters that can be retrieved from

a wireless signal reflected from a human target. We only con-

sider the path with one or less reflections, since the signal

experiencing two or more reflections during the transmis-

sion, has extremely low signal strength and can hardly be

captured by wireless receiver.

Target (reflector)

Transmitter ReceiverPath-2

Path-1

𝝋𝟏 𝝓𝟏

𝝉𝟏

𝜸𝟐 = 𝟎

𝜸𝟏 ≠ 𝟎

Static object

Ellipse

Direct Path

Figure 2: The multi-dimensional parameters of signal
paths related to location and motion tracking.

2.1 Parameters of a signal path

Time of flight (τ ). The propagation time the signal takes to

travel along a particular path from the transmitter to the re-

ceiver is referred as the time of flight (ToF) τ . As Fig. 2 depicts,
ToF estimation of a reflected signal defines an ellipse (with

the transmitter and receiver as the two focal points) where

the reflector is located. The resolution of ToF estimation is

inversely proportional to the channel bandwidth [47].

Angle of arrival (ϕ) and angle of departure (φ). The an-
gle of arrival (AoA) ϕ indicates the direction of the signal

arriving at the receiver, and the angle of departure (AoD)
φ indicates the direction of the signal departure from the

transmitter, as shown in Fig. 2. The number of antennas at

sender/receiver determines the resolution of the AoA/AoD

estimates, respectively.

Doppler shift (γ ). Movement of the transmitter, receiver,

or reflectors all introduce frequency shifts to the carrier

frequency of the signal which is referred as Doppler shift γ .
Doppler resolution is related to the observation interval: the

longer the interval, the finer the resolution.

Complex attenuation (α ). The signal is attenuated by α
when propagating from the sender towards the receiver.

2.2 Wireless signal model
The mD-Track transmitter has an array of N antennas, and

receiver has an array ofM antennas. They are linear arrays

with a uniform spacing d between adjacent antennas, as

shown in Fig. 3. If we denote the transmitted signal asU (t) =
[u1(t),u2(t), . . . ,uN (t)], then we can use the above signal

parameters to express the signal reaches the receiver through

a single path as follows:

s(t ;υ) = αe j2πγ t c(ϕ)g(φ)TU(t − τ ), (1)

where υ = [ϕ,φ,τ ,γ ,α]T is the parameter vector containing
the parameters that characterize the signal. The N -element

transmit array steering vector g(φ) characterizes the phase
relationship of the signal coming out of the N transmitting

antennas while theM-element receive array steering vector
c(ϕ) characterizes the phase relationship of the signal arriv-

ing at theM receiving antennas [51]. The signal received at

the receive antenna due to this single path is then:

y(t) = s(t) +W(t), (2)

where W(t) = [w1(t),w2(t), . . . ,wM (t)]T is M-dimensional

complex Gaussian noise capturing the background noise.
1

3 PARAMETER ESTIMATION
We first describe the design of mD-Track’s parameter estima-

tion algorithm in Section 3.1 in a simplified scenario where

there is only one path in the environment, and describe in de-

tail how different signal parameters (ToF, AoA, AoD, Doppler

shift and attenuation) of that single path can be estimated.

Then in Section 3.2 we introduce our joint estimation method

to handle multiple signals arriving through different prop-

agation paths. Section 3.3 discusses our approach to make

computational complexity tractable.

3.1 Multi-dimensional estimator
This section first considers an environment where there is

only one path from sender to receiver. We assume perfect

transceivers without phase offsets across radio chains. Such

an assumption is justified in Section 4.1 with phase calibra-

tion. Our design factors into different modules, each corre-

sponding to one of the above parameters. Multiple modules

are employed together to jointly estimate all the parameters.

Channel estimation. Before estimating the parameters, we

need to estimate the wireless channels hi, j,k of subcarrier

k between each transmit antenna i and receive antenna j.
For explanatory purposes, we will consider a running exam-

ple with N subcarriers and two transmit and two receive

antennas as shown in Fig. 3. The task is to estimate:

Hk =

[
h11,k h12,k
h21,k h22,k

]
. (3)

for all subcarriers k = [1, 2, . . . ,N ]. To avoid sudden signal

level changes, the 802.11n standard [1] multiplies the pream-

ble or High Throughput Long Training Field (HT-LTF
2
) with

1
We use s(t ) and s(t ;υ) interchangeably throughout the paper.

2
We use HT-LTF and LTF interchangeably throughout the paper.
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the HT-LTF mapping matrix:

PHTLT F =
[
1 −1

1 1

]
, (4)

whose columns correspond to each of the two time slots and

whose rows correspond to each of the two transmit anten-

nas. This results in the frequency domain transmitted signal

PHTLTF × LTF(k), as shown in Fig. 4. When both antennas

transmit simultaneously, the received frequency domain sig-

nal from subcarrier k at the two receive antennas during the

two time slots t1 and t2 is given by:[
x1,k,t1 x1,k,t2
x2,k,t1 x2,k,t2

]
=

[
h11,k + h21,k −h11,k + h21,k
h12,k + h22,k −h12,k + h22,k

]
× LTF(k)

Since PHTLT F is known and constant, the receiver estimates

the wireless channel by multiplying the received signal with

P∗HTLT F , and obtains:[
x1,k,t1 x1,k,t2
x2,k,t1 x2,k,t2

]
× P∗HTLT F = 2 ×

[
h11,k h21,k
h12,k h22,k

]
× LTF(k).

Via the above process, the receiver decouples the two simul-

taneously transmitted preambles to estimate the wireless

channel. We note that 802.11’s cyclic time delay across dif-

ferent antennas, introduces known linear phase shifts across

subcarriers on h21,k and h22,k , which are removed by mD-

Track after extracting the channel estimates.

AoA estimator. The AoA estimator, i.e., the AoA box in

Fig. 3, is implemented by multiplying the estimated channel

Hwith the receive antenna array steering vector c(ϕ) defined
in Section 2.2. Specifically, on subcarrier k , we obtain:[

h′
1,k (ϕ)

h′
2,k (ϕ)

]
=

[
h11,k h21,k
h21,k h22,k

]
c∗(ϕ). (5)

For the wideband Wi-Fi channel with N subcarriers, we

apply Eq. 5 to the estimated channels of all subcarriers and

obtain the combined channel:

H′(ϕ) =

[
H′
1
(ϕ)

H′
2
(ϕ)

]
=

[
h′
1,1(ϕ) . . . h′

1,k (ϕ) . . . h′
1,N (ϕ)

h′
2,1(ϕ) . . . h′

2,k (ϕ) . . . h′
2,N (ϕ)

]
(6)

Differing AoAs ϕ yield differing steering vectors, so once the

correct ϕ is applied to the channel H, the channel between
the transmit antenna and the two receive antennas align

and add constructively, so the strength of the AoA estimator

output is maximized. Therefore, we estimate the AoA by

searching for the ϕ∗
that maximizes the sum power of the

combined channel:

ϕ∗ = argmax

ϕ

2∑
i=1

N∑
k=1




h′
i,k (ϕ)




2 . (7)

where h′
i,k (ϕ) is the combined channel of the kth subcarrier

on the ith antenna.

AoD Estimator. When received, the second transmit an-

tenna’s signal travels an additional distance to reach the

receive array, and hence introduces an extra phase shift. The

mD-Track AoD estimator takes H′(ϕ∗) as input and corre-

lates this matrix with the transmit antenna array steering

vector g(φ) defined in Section 2.2:

H′′(φ;ϕ∗) = gH (φ)H′(ϕ∗), (8)

where the combined channel H′′(φ;ϕ∗) is a 1×N vector. We

estimate the AoD by searching for the φ∗
that maximizes the

sum power of the combined channel:

φ∗ = argmax

φ

N∑
k=1



h′′
k (φ;ϕ

∗)


2 , (9)

where h′′
k (φ;ϕ

∗) is the k-th element of H′′(φ;ϕ∗), i.e., the
channel of the k-th subcarrier. As with the AoA estimator,

once the AoD guess is correct, the phase differences due to

AoD are removed. The channels thus constructively combine,

maximizing the output magnitude.

Doppler and ToF Estimator. We reconstruct the received

time domain signal using the channel matrix H′′(φ∗,ϕ∗) and

the known transmitted frequency domain LTF by iFFT :

y′′(t ;ϕ∗,φ∗) = F −1{H′′(φ∗,ϕ∗) ⊙ LTF}, (10)



where the operator ⊙ is the Hadamard product, i.e., element

wise multiplication of matrix. The signal y′′(t ;ϕ∗,φ∗) that

arrives at the Doppler and ToF estimators is a frequency-

shifted and delayed version of the transmitted signal U(t).
To estimate that frequency shift and the delay, our approach

is to cancel the frequency shift and reverse the delay of the

signal and then correlate it with the transmitted signal U(t).
If the correct frequency shift is canceled and correct delay is

reversed, there will be a peak in the correlation result.

Specifically, the Doppler shift causes a 2πγt phase shift to
the received time domain signal according to Eq. 1. We there-

fore cancel such a frequency shift by multiplying the signal

by e−j2πγ t . To reverse the delay and obtain y′′(t + τ ;ϕ∗,φ∗)

is practically difficult since y′′(t ;ϕ∗,φ∗) is the received sig-

nal. Instead of reversing the delay, we correlate the received

signal with the delayed version of transmitted signal U(t −τ ).
For a given ϕ∗

and φ∗
the correlation is computed as:

z(τ ,γ ;ϕ∗,φ∗) =

∫
T
e−j2πγ ty′′(t ;ϕ∗,φ∗)U∗(t − τ )dt , (11)

whereT is the signal duration of y′′(t ;ϕ∗,φ∗). A peak appears

when U(t −τ ) and y′′(t ;ϕ∗,φ∗) align with each other in both

time and frequency.

mD-Track combines the above individual modules into a

four-dimensional estimator shown in Fig. 3, for a two-an-

tenna transmitter and receiver. We first estimate AoA at each

timeslot, before feeding the output of the AoA beamformer

to the AoD estimator. The output of the AoD estimator is

then passed to the Doppler estimator to estimate and re-

move any Doppler shift, and then correlated with a delayed

transmit signal U(t − τ ) to estimate the ToF. The careful

reader will notice that mD-Track’s processing in this part

of the design is sequential. However, the order of process-

ing is carefully chosen: Doppler shift affects all antennas

equally, and so the AoA and AoD estimators, which rely on

measuring phase differences across different antennas, are

unimpaired by arbitrary Doppler shifts. Furthermore, the

search in parameter space described in the next section al-

lows us to jointly estimate all parameters. For the general

four-dimensional estimator given in Fig. 3, its output is:

z(ϕ,φ,τ ,γ ) =

∫
T
e−j2πγ tF −1{gH (φ)Hc(ϕ)∗ ⊙ LTF}U∗(t − τ )dt ,

where the z(ϕ,φ,τ ,γ ), denoted as the z-function, is calculated
for all possible [ϕ,φ,τ ,γ ] combinations. The estimation of

parameters [ϕ,φ,τ ,γ ] is then obtained by:

(ϕ,φ,τ ,γ )est = argmax

υ
|z(ϕ,φ,τ ,γ )|. (12)

Combining Eq. 1 and Eq. 12 with Eq. 2 then yields α :

(α)est =
1

M ·T · P
z((ϕ,φ,τ ,γ )est ), (13)

whereM is the antenna number,T is the signal duration and

P is the transmit power. The received signal s(t) is now fully

characterized by the parameter vector υ = [ϕ,φ,τ ,γ ,α]T .
Our design is module-based with a high flexibility. It can

be adapted to a three-dimensional [ϕ,τ ,γ ] estimator for the

single-antenna transmitter case, and one-dimensional ToF

estimator for the single antenna transceiver case.

3.2 Resolving multiple paths
The discussion in the preceding section has considered a sin-

gle wireless propagation path. We now extend our design to

handle multipath propagation. We assume the antenna array

receives signals from L distinct paths, denoting the signal

from the l th path as s(t ;υl ) where υl = [ϕl ,φ,τl ,γl ,αl ]
T
. The

received signal is thus the superposition of the signals from

all L paths:

Y(t) =
L∑
l=1

sl (t ;υl ) +W(t). (14)

The goal is to estimate the path parameters:

V = [υ1,υ2, . . . ,υL], (15)

for all L paths in Y(t). Note that the number of multipaths L
is also unknown and thus must be estimated.

Resolvability is the premise of accurate path estimation.

Non-resolvable signals are merged and the estimated parame-

ters of the combined signal lead to a non-existing path which

deviates from the true ones [51, 53]. Although our multi-di-

mensional estimator in Section §3.1 improves the resolvabil-

ity by higher dimensional parameters [ϕl ,φ,τl ,γl ,αl ]
T
of

each path, the energies of nearby signal paths may still affect

the estimation accuracy, e.g., a weaker signal may be over-

whelmed by a nearby strong signal and thus not detected.

We perform a controlled experiment (with the settings in Sec-

tion §6.1.1) to demonstrate such an effect, where two signals

with AoAs (60.7◦ and 73.4◦) and ToFs (20.6 and 28.1 ns) are
created. The signal with ToF 20.6 ns is 10 dB stronger than

the other. We input the superimposed signal into our 2-di-

mensional estimator (AoA and ToF) and obtain the z-function

as depicted in Fig. 5 (a). It is expected that two peaks will

appear in Fig. 5 (a), but the weaker signal, in practice, is domi-

nated by the stronger signal and cannot be detected from the

z-function. Similar results are obtained in previous studies

using 1-dimensional MUSIC or 2-dimensional SpotFi [19].

A main reason is that those approaches identify the signal

paths and estimate the parameters in a single round. No it-

erative refining is included to accurately determine energy

shares between different signal paths.

mD-Track employs iterative parameter refinement during

which the path signals are iteratively re-estimated and more

accurately reconstructed from refined parameters in multiple
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Figure 5: Output (z-function) of the multi-dimen-
sional estimator with input: (a) superimposed signal
of a stronger signal with AoA and ToF [60.7◦, 20.8 ns]
and a weaker signal with [73.4◦, 28.1 ns]; (b) the resid-
ual signal after canceling the stronger signal; (c)
reconstructed stronger signal and (d) reconstructed
weaker signal after three iterations. The peaks of z-
function appear at (a)[63.5◦, 22.5 ns], (b) [85.9◦, 30.5 ns],
(c) [61.2◦, 21.3 ns], and (d) [76.7◦, 27.0 ns].

rounds. We borrow the idea of successive interference can-

cellation (SIC) technique from data communications [13, 31]

to stepwise estimate and subtract the signal of each path

from the received signal and derive the initial estimates as a

starting point of the refinement process.

3.2.1 Initial estimation. To process the L superimposed

signals [s1(t), s2(t), . . ., sL(t)] in decreasing order of signal

strength, we first treat all signals but the strongest, i.e., s1(t),
as noise, applying the multi-dimensional estimator to the

raw received signal Y (t) to obtain the output z-function, just

as in Fig. 5(a). We estimate the parameters υ1 of signal s1(t)
as the highest peak in the z-function. After this estimate, we

reconstruct signal s1(t) using υ1 and cancel it from Y (t). We

then calculate the residual signal as:

y2(t) = Y(t) − s1(t) = s2(t) + · · · + sL(t) +W(t). (16)

In this residual signal, the second strongest signal s2(t) domi-

nates. We then iterate the process, passing y2(t) to the multi-

dimensional estimator, which now treats [s3(t) , . . . , sL(t)]
as noise. Now s2(t) results in the highest peak in z-function,

as shown in Fig. 5 (b). We continue to iterate until all the

signals are separately estimated, stopping when the residual

power in yL(t) is below the dynamic range of the radio. The

number of paths L is also obtained. We note that, the final

residual signal:

Ŵ(t) = Y(t) −
L∑
l=1

sl (t), (17)

is our estimation of the background noise.

3.2.2 Iterative path parameter refinement. At this point,
mD-Track has obtained an estimate of the number of sig-

nal paths L and a coarse estimate of each path’s parameters.

Remaining error arises from two sources. First, although

small, interference from weaker signals still affects the esti-

mation of stronger signals. As shown in Fig. 5(a), the peak

of the z-function, i.e., [63.5◦, 22.5ns], is the estimation result

for stronger signal, which deviates slightly from the ground

truth, i.e., [60.7◦, 20.8ns], due to the existence of the nearby

weaker signal. Second, the energy leakage from stronger

signal during the cancellation introduces errors to the esti-

mation of the weaker signal. The stronger signal we have

reconstructed and canceled is therefore not identical to the

true signal due to estimation errors. Energy leaks in the resid-

ual signal have a large effect on the estimation of weaker

signal and can result in a large estimation error, as shown

in Fig. 5(b). To remove the interference, we reconstruct the

stronger signal yl (t) from l th path with its estimated param-

eters and the estimated noise as:

y′l (t) = sl (t ;υl ) + Ŵ(t), (18)

where the sl (t ;υl ) is reconstructed using the parameters υl
obtained in the first round. The signal y′l (t) is now refined,

containing less interference compared to the raw signal yl (t)
in whichweaker signals are also considered as noise.We then

re-estimate the path parameters of y′l (t), υ
′
l , with the multi-

dimensional estimator given in §3.1. To reduce the leakage,

we keep calculating and updating the noise. Supposing we

have obtained new parameters [υ ′
1
,υ ′

2
, ...,υ ′ls ] for ls stronger

paths, we can update the noise of the (ls + 1)
th

path as:

Ŵ(t) = Y(t) −
ls∑
l=1

s′l (t ;υ
′
l ) −

L∑
l=ls+1

sl (t ;υl ), (19)

where the s′l (t ;υ
′
l ) is reconstructed using refined parameters

υ ′l and is closer to the true received signal so that less leakage

is contained in the noise. The signal of (ls + 1)
th

path is then

reconstructed using updated noise according to Eq. 18.

The path re-estimation and reconstruction is performed

for every path, and sowe obtain the estimateV′ =
[
υ ′
1
, . . . ,υ ′L

]
for all paths. Now we have obtained a better estimateV ′

, we

feed it back into Eq. 18 to start another round of estimation.

The above steps of multipath signal re-estimation and recon-

struction are iterated, and stop when the difference of each

path parameter between two consecutive iterations is smaller

than a predefined threshold. The threshold can be flexibly
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Figure 6: The framework of the iterative path parameter estimation algorithm (L = 2wireless propagation paths).
SIC gives the coarse estimation υ1 and υ2. The iterative process keep refining the estimation till convergence.

tuned to meet different levels of accuracy requirements. In

our current implementation, the threshold is set as the step

size of the parameter search in §3.3, yielding accurate results

for passive localization and motion tracking (§6).

Fig. 6 illustrates theworkflow of the iterative process based

on an example of superimposed signal from two paths. The

initial signal cancellation and estimation steps obtain the

coarse estimates υ1 and υ2 for the two paths. From there,

the iterative process reconstructs the path signals y′
1
(t) and

y′
2
(t), re-estimates the path parametersυ ′

1
andυ ′

2
, and updates

the residual signal Ŵ(t) in each iteration. Fig. 5s (c) and (d)

present the z-function of our multi-dimensional estimator

after three rounds of iteration. It is clear that the peak in

Fig. 5s (c) and (d) is much closer to the true path parameters

compared with Fig. 5 (a) and (b).

Convergence. A common issue for iterative algorithms is

their convergence. It can be proved
3
that the above iterative

process belongs to the EM family of algorithms [9, 10] with

the expectation step given by Eq. 18 and maximization step

given by Eq. 12, and so convergence is guaranteed [9]. One

problem with EM is that it may converge to a local instead

of the global maximum if the EM algorithm is not properly

initialized. Comprehensive experiments in §6 empirically

show that our cancellation-based initialization is able to

provide an accurate initial start, ensuring that our iterative

algorithm almost always converges to the global maximum.

3.3 Reducing computational complexity
From Fig. 6, we see that the multi-dimensional estimator

accounts for a significant portion of mD-Track’s computa-

tion complexity. Each multi-dimensional estimator solves

am ML problem by an exhaustive search. Specifically, the

total number of possible combinations that a 4-dimensional

estimator that estimates [ϕ,φ,τ ,γ ] has to access is given by:

η = pϕ × pφ × pτ × pγ , (20)

where pϕ , pφ , pτ and pγ are the number of steps for each path

parameter, respectively (e.g., pϕ = 100 if the range for AoA

estimation is [0,π ] with a step size of 0.01π ). The number of

combination η increases exponentially with the number of

dimensions, causing unbearable overhead. From Fig. 6, we

3
The proof is not included due to page limitation.

see that the estimator is applied Niter × L times, supposing

we have L paths and the system iterates Niter rounds.

During each iteration, the input to each multi-dimensional

estimator is actually the signal from one path plus the noise,

as shown in Fig. 6. Normally, the power level of the signal

is tens of dB higher than noise, so we observe a dominant

peak in the output z-function of the estimator as Figures 5 (c)

and (d) show. Based on this observation, we use a coordi-
nate descent method [45] to approach the maximum. We

replace the four-dimensional search in Eq. 12 with four one-

dimensional searches. Specifically, we fix three of the four

parameters (e.g. φ, τ , and γ ) and search for the value of the

fourth parameter(e.g., ϕ) that can generate a maximal output:

ϕ ′′ = argmax

ϕ
|z(ϕ,φ ′,τ ′,γ ′)|, (21)

where φ ′
, τ ′ and γ ′

are the estimates from the previous iter-

ation. We repeat this process for the other three parameters:

φ ′′ = argmax

φ
|z(ϕ ′′,φ,τ ′,γ ′)|, (22)

τ ′′ = argmax

τ
|z(ϕ ′′,φ ′′,τ ,γ ′)|, (23)

γ ′′ = argmax

γ
|z(ϕ ′′,φ ′′,τ ′′,γ )|, (24)

and obtain an update of all four parameters. By doing so,

we reduce the search space from pϕ × pφ × pτ × pγ to pϕ +
pφ + pτ + pγ , a significant reduction. The trade-off is that

the global maximum of each multi-dimensional estimator in

Fig. 6 can not be guaranteed [11, 24]. We can only guarantee

an increase in the output z-function compared with the start

point instead of maximizing it.

Convergence of mD-Track. From Fig. 6 we see that L multi-

dimensional estimators are needed in each round of iter-

ations. If every multi-dimensional estimator in this round

maximizes its z-function, then the expectation is maximized

andmD-Track walks a big step towards the optimal. We relax

the requirement of maximization to simply increasing the ex-

pectation, which is called generalized EM (GEM) [11, 24]. Co-

ordinate descent method satisfies the increasing of z-function

and mD-Track becomes a GEM. For a GEM algorithm, the

convergence to maximum (either local or global maximum)

is still guaranteed but more iterations may be needed to



achieve the final maximization of expectation [11, 24]. Never-

theless, since we carefully initialize the algorithm and select

a reasonably good starting point with the initial cancella-

tion and estimation steps, mD-Track still converges fast. Our

experimental results show that mD-Track converges in less

than 9 rounds in 90% of cases, even with 10 signal paths.

The number of iterations typically reduces to as small as

five when there are five signal paths. Therefore, the overall

computational overhead is significantly reduced.

4 CHANNEL MEASUREMENT
In this section, we introduce how we estimate the wireless

channel using Wi-Fi transceivers. Channel measurement er-

rors are inevitable due to imperfect hardware, and so we also

describe how we handle channel measurement uncertainty.

In order to estimate one channel parameter, we have to

sample the wireless channel in its corresponding sampling

domain. For example, to estimate ToF, we must sample the

channel in the frequency domain. Similarly, to estimate a fre-

quency shift that has been added to the signal (e.g., a Doppler
frequency shift), we need to sample the channel in the time

domain. Channel sampling in the spatial domain is required

to estimate signal angle (including AoA and AoD). Table 1

summarizes the channel parameter and its corresponding

sampling domain.

Channel parameter: ϕ,φ τ γ
Sampling domain: Space Frequency Time

Table 1: Channel parameters and their corresponding
channel sampling domains.

To estimate multiple parameters, we need to sample the

channel in multiple domains. Fig. 7 depicts the channel

sampling results for estimating AoA + AoD + ToF + fre-

quency shift. Where N andM are the numbers of transmit-

ting/receiving antennas (spatial domain), F is the subcarrier

number (frequency domain), andT is the number of channel

samples in time (time domain). If the interval between two

channel sampling is ts , then we sample the channel for the

duration ofT · ts . The channel sampling results is a matrix of

size N ×M × F ×T . Any sub-matrix can be used to estimate

a subset of parameters. For example, a channel sampling

matrix of sizeM × F can be used to estimate AoA + ToF. We

note that our parameter estimation algorithm, described in

the previous section, can take any dimensional matrix as

input and estimate any combination of parameters.

4.1 Measurement Error Handling
Since the hardware we use to measure the wireless channel

is imperfect, channel measurement errors are introduced

inevitably. For example, it has been observed that a constant,
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Figure 7: Channel sampling results for jointly estimat-
ing four channel parameters (AoA + AoD + ToF + fre-
quency shift).

time-invariant phase offsets exist for the signals transmitted

or received at sender and receiver [51], which affect estimates

of AoD and AoA, respectively. Sampling frequency offset

(SFO) and symbol timing offset (STO) affect the estimation

of ToF. Carrier frequency offset (CFO) itself is a frequency

shift that added to the signal, which appears as an actual

Doppler frequency shift. Technically speaking, CFO is not an

error but will affect the estimation of Doppler shift without

proper handling. Table 2 summarizes error sources and the

estimation of each parameter they affect.

Error source: Phase offsets

of TX-chains

Phase offsets

of RX-chains

SFO, STO CFO

Parameter: AoD AoA ToF Doppler

Table 2: Channel measurement error source and the
corresponding channel parameter it affects.

Phase offset across radio chains. The wireless signal trans-
mitted or received by multiple antennas experiences a phase

shift introduced by the radio chains [51]. The phase offsets

across radio chains must be eliminated to provide accurate

angle estimation (AoA and AoD). Such a phase offset is con-

stant across time (T samples) and frequency (F subcarriers),

and can be measured by connecting the transmit chain and

receive chain of WARP or COTS Wi-Fi devices via a coaxial

cable, as Fig. 8(a) illustrates, where three transmit chains

and receive chains are connected. We, however, observe that

spatial multiplexing fails and no packets can be correctly

received with such a setup as the channel matrix becomes

singular. To break the singularity, we use the setups shown

in Fig. 8 (b) and (c). In Fig. 8 (b), we measure the phase offset

between: 1) transmit chain 2 and transmit chain 3, denoted

as α2; 2) receive chain 1 and receive chain 2, denoted as β1.
Similarly, phase offsets α1 and β2 are measured with the se-

tups shown in Fig. 8(c). The phase offsets are then canceled

with the measured value.

SFO and STO. Due to the lack of tight time synchroniza-

tion between Wi-Fi transceivers, SFO and STO introduce

phase errors in the frequency domain and thus affect the

estimation of ToF [47, 53]. The SFO and STO are the same

across antennas of the same channel sample (one packet) but
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Figure 8: Three TX chains and RX chains are con-
nected together with power splitter/combiner in (a).
One TX or RX radio chains are connected to two TX
or RX radio chains in (b) and (c).

vary across samples, which results in different phase errors

added to the T channel samples of Fig. 7. Estimation based

on such a matrix won’t give us meaningful ToF results. We

thus propose to use the phase of the first channel sample as

an anchor and then align the phase of the rest T − 1 sam-

ples to it. Specifically, the phase error introduced by SFO

and STO can be modeled as ek = k · λ, where k is the index

of the subcarrier. The error is added linearly to the phase:

Pk = θk + ek , where Pk and θk are the measured and the real

phase of subcarrier k , respectively. The exact value of slope
λ is decided by STO and SFO and is hard to measure. We thus

calculate the slope difference between ith channel sample

and the first channel sample by Pk,i −Pk,1 = k · (λi −λ1). We

then remove the difference to align the phase errors in the

frequency domain.
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Figure 9: Amicrobenchmark study of two paths: a) the
histogram of the absolute ToF and the relative ToF be-
tween two paths; (b) the CDF of the ToF error.

The phase error introduced by SFO and STO is aligned but

not removed, which makes it practically difficult to obtain

the absolute ToF [19]. We observe that the time delay added

by SFO and STO is the same for all the paths. Therefore, the

ToF difference between a pair of two paths is invariant even

in the presence of SFO and STO. Fig. 7 shows the results

from our controlled experiment by connecting radio chains

of two QCA9558 together using two RF coaxial cables of

different lengths to generate different ToFs (t1 = 9.2 ns and
t2 = 27.4 ns). We then estimate the ToF of the received signal.

Fig. 9 (a) plots the histogram of the estimated absolute ToF

values t1 of the signal from the shorter cable, which exhibits

a large variation across different transmissions. On the other

hand, we see from this figure that the variation of the relative

ToF |t2 − t1 | between the two paths is minimal. Fig. 9 (b)

presents the CDF of the ToF estimation error. We see that

even when the absolute ToF measurements are inaccurate

(a median error of 13 ns), the relative ToF estimates can be

very accurate (a median error of 0.48 ns).

Based on the above observation, we use the ToF measure-

ment of the direct path as a reference basis to calibrate the

ToF estimations of other reflection paths. We first calculate

the ground-truth ToF, AoA, AoD of the direct path based on

the locations of the transceiver pair. From all signal paths

output from mD-Track, we identify the path with shortest

ToF and largest amplitude, as the direct path and derive the

∆τ between the measured and ground-truth ToF. We then

use the derived ∆τ to correct the ToF measurements for all

reflection paths. In this way, we eliminate the impact of SFO

and STO, and thus obtain accurate ToF information.

CFO. Both CFO and Doppler shift are frequency shifts

added to the signal and so our estimator is unable differ-

entiate the two. There are, however, two major differences

between CFO and Doppler: 1) the magnitude, i.e., CFO is on

the order of 100s of Hz and Doppler introduced by a human

is only a few Hz; 2) CFO is added to all the multipaths, but

Doppler is only introduced to mobile paths. Two important

parameters determine the performance of frequency shift

estimation. First, the channel sampling interval ts as Fig. 7
shows, which gives the maximum frequency shift fm that

can be estimated by fm = 1/ts . Second, the total sampling

periodT · ts , which gives the minimum frequency difference

the estimation can differentiate by 1/(T · ts ). The standard
Wi-Fi protocol uses two consecutive LTF of one preamble to

estimate the CFO, which has small sampling interval (and

thus a large frequency range to estimate CFO of 100s of Hz)

and small total sampling period (and thus coarse frequency

resolution). We reuse the CFO estimation of standard Wi-Fi

to get a coarse estimation of CFO and then remove it from

the channel sampling results before the actual estimation so

that it becomes much smaller. We then sample the channel

with multiple packets, just as Fig. 7 shows, with a larger sam-

pling interval ts = 25ms (smaller estimation range of 40Hz)

and larger sampling period 1s (higher frequency resolution

of 1Hz). With such a high frequency resolution, the small

frequency shift introduced by human and the small residual

CFO can be estimated. As CFO is constant for all paths, we

subtract the frequency shift of the direct path (a static path)

from the frequency estimation of all the paths. A residual

frequency shift from Doppler effect remains.

5 IMPLEMENTATION
We implement the core estimation algorithms of mD-Track

at a backend server which is a desktop workstation. We use

both WARP v3 boards [29] and commodity Wi-Fi routers to

sample the channel and send the results back to server.
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Figure 10: (a) Experimental set up in a indoor meeting
room. We use both (b) COTS Wi-Fi AP with three an-
tennas and (c) WARP with at most eight antennas as
radio frontend to collect channel measurements.

Version mD-Track 2D mD-Track 3D mD-Track 4D SpotFi

Parameter AoA + ToF

AoA + ToF +

Doppler

AoA + ToF +

AoD + Doppler

AoA + ToF

Input M × 64 M × 64 ×T N ×M ×64×T M × 56

Table 3:We implement three different versions ofmD-
Track as well as SpotFi for comparisons.
WARPs.WARP v3 boards collect time domain IQ samples

and send them to a PC connected to the WARP via an Ether-

net cable. The PC detects the begining of the packet, extracts

the LTF and sends the LTF to the server.

Commercial APs.All of our APs are equippedwith Atheros
Wi-Fi NIC or SoC (AR9340, AR9580, and QCA9558), and run

a customized OpenWRT system. We modify the Wi-Fi driver

in kernel space of OpenWRT to enable CSI collection [48].

We build a user-space application that retrieves the received

frequency domain LTF by multiplying the transmitted LTF

(defined in 802.11 standard) with received CSI (empty subcar-

riers of CSI and LTF are padded with zeros). We transform

the frequency domain LTF into time domain sample via the

IFFT, which are sent to the server over the backhaul network.

6 EVALUATION
We conduct experiments in different indoor environments in-

cluding labs (600 and 420m2
), meeting rooms (54 and 32m2

)

and corridors. Fig. 10 (a) shows the experimental setup in one

of our indoor meeting rooms. Channel measurements col-

lected by commercial APs (Fig. 10 (b)) and WARP (Fig. 10 (c))

are sent to the server via wired backhaul, where parameters

are estimated. All APs work in MIMO mode when using

multiple antennas.

Multiple versions of mD-Track. We implement three ver-

sions of mD-Track, as shown in Table 3. mD-Track 2D uses

just AoA and ToF, like SpotFi, while mD-Track 3D adds

Doppler and mD-Track 4D adds both Doppler and AoD. The

input channel measurement to each version of mD-Track is

different. According to Fig. 7 and Table 1, a channel measure-

ment matrix with sizeM × 64 (20 MHz) is used for mD-Track

2D. The matrix size increases toM×64×T andM×N ×64×T
for mD-Track 3D and 4D respectively.

SpotFi. We compare the passive localization performance

with SpotFi, which jointly estimates the AoA plus ToF for

localization
4
Spatial and time smoothing is applied to SpotFi.

We note that SpotFi is actually able to estimate the parame-

ters of all the paths, including the reflection paths. We there-

fore make use of the parameters of the reflection path that

SpotFi estimates to passively localize objects. To provide a

fair comparison, we use the same input channel measure-

ment matrix of M × 64 for 2D SpotFi and 2D mD-Track.

Keeping increasing the matrix for SpotFi, e.g., N × 64 × T ,
only provides a marginal improvement for SpotFi since the

time domain sampling works for estimation of frequency

shift not the AoA or ToF, as Fig. 7 and Table 1 shows.

6.1 Resolving multipaths
In this section, we first present a resolvability analysis of

mD-Track which studies its capability to resolve two paths

that has similar parameters. We then study the estimation

accuracy of the path parameters in each dimension.

6.1.1 Resolvability. We demonstrate that mD-Track has

a significantly better ability than previous algorithms to re-

solve two signals. We conduct controlled experiments by

connecting the transmitting and receiving RF chains of two

WARPs with coaxial cables, varying the length of cable to

provide different propagation times. We rotate the trans-

mitted signal phases to emulate different AoAs, AoDs and

Doppler shifts. We vary the ToF, AoA, AoD and Doppler

differences between the two signals by a multiple of the pa-

rameter’s basic resolution: the resolution of ToF at a 20 MHz

bandwidth is ∆τ = 50 ns , and Doppler at a 1 s observation
time is ∆γ = 1 Hz. Angular resolution of AoA and AoD is

∆ϕ = 14.2◦ for eight antennas in the array [17]. When two

paths are close to each other, they may not be able to be re-

solved and may be estimated as one path deviated from both

the two paths. For each parameter configuration, we trans-

mit 1,000 packets and resolve the two signals with mD-Track

1,000 times using received packets.

Fig. 11 plots the results. The x-axis and y-axis are the

path parameter differences relative to basic resolution in

that dimension, e.g., 0.2 of ToF means 0.2 × 50 ns = 10 ns
and the color depth (from blue to red) indicates the probabil-

ity that two path signals are resolvable in 1,000 estimations.

We compare the resolvability of mD-Track with SpotFi and

MUSIC. We observe that all algorithms perform better than

the basic resolution limit so that two signals with parame-

ter difference smaller than its basic resolution can still be

resolved. Furthermore, increasing the number of dimensions

significantly increases resolvability. One dimensional MUSIC

4
Wi-Deo [18] is another passive localization system using estimated path

parameters. As we do not have the source codes of Wi-Deo, we do not

directly compare with it.
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(c) SpotFi (AoA+ToF)
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(d) AoA+ToF
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(e) AoA+ToF+Doppler
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(f) AoA+ToF+AoD+Doppler
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(g) AoA+ToF+AoD+Doppler
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Figure 11: The color indicates the probability of resolving two signals: blue indicates “non-resolvable" and red
means “fully resolvable". We compare the resolvability of: (a) MUSIC 1D to estimate ToF; (b) MUSIC 1D to es-
timate AoA; (c) SpotFi 2D to jointly estimate AoA+ToF; (d) mD-Track 2D to jointly estimate AoA+ToF; (e) mD-
Track 3D to jointly estimate AoA+ToF+Doppler with Doppler unchanged; (f) mD-Track 4D to jointly estimate
AoA+ToF+Doppler+AoD, with AoD and Doppler unchanged; (g) mD-Track 4D, with ToF and Doppler unchanged;
and (h) mD-Track 4D with ToF and AoD unchanged.
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Figure 12: mD-Track runns on COTS AP. CDF of (a) AoA estimation errors of the direct path signal; (b) AoA
estimation errors of reflection path signals; (c) ToF estimation errors; (d) AoD estimation errors, for mD-Track,
SpotFi, and MUSIC.

is not able to resolve two signals with AoA/ToF difference

smaller than 0.75 of its basic resolution. The fraction can

be reduced to about 0.4 if applying 2D mD-Track, 0.1 if ap-

plying 3D mD-Track and 0.04 if applying 4D mD-Track. At

last, even with the same dimension, 2D mD-Track still out-

performs 2D SpotFi in Fig. 11 (c) and (d). The improvement

stems from the iterative interference cancellation and path

refinement process in mD-Track. Takeaway. Increasing the
dimension improves the resolvability significantly.

6.1.2 Estimation Accuracy. Wedemonstrate thatmD-Track

can estimate path parameters at high accuracies even using

commodity Wi-Fi APs with only three antennas in this sec-

tion. We collect channel readings using Compex WPJ558

router. We calculate the ground truth of AoA, AoD, and ToF

based on the actual positions of the transceivers. We com-

pare AoA and ToF estimation with MUSIC and SpotFi and

favor MUSIC and SpotFi by selecting the path with the AoA

estimate closest to the ground truth as their estimate.

AoA and ToF estimation. AoA estimation results are pre-

sented in Figs. 12 (a) and (b). mD-Track provides significantly

more accurate AoA estimates: with only three antennas, mD-

Track’s median AoA error for the direct path is as small

as 4.4◦ and 6.2◦ on 4D and 2D versions respectively, com-

pared to 13.4◦ and 17.1◦ from SpotFi and MUSIC. The AoA

estimates of the weaker reflection paths are less accurate.

Despite that, mD-Track still achieves a median AoA error of

5.6◦ and 7.3◦ on 4D and 2D versions respectively, compared

with 16.9◦ and 24.2◦ for SpotFi and MUSIC. From Fig. 12 (c),

we see that mD-Track 4D and 2D are able to estimate ToF

with a median error of 1.23 ns and 1.85 ns , while SpotFi and
MUSIC achieve a median error of 3.8 ns and 6.7 ns .

AoD estimation. Fig. 12(d) gives mD-Track 4D’s AoD esti-

mation results for LoS path and reflection path. The median
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Figure 13: Passive localization error of mD-Track and
SpotFi when using the WARP and a 40 MHz channel.
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Figure 14: Localization error of mD-Track when using
commercial Wi-Fi devices with only 3 antennas.

errors are 3.3◦ and 7.6◦ respectively. According to our knowl-
edge, mD-Track is the first system based on COTS Wi-Fi

hardware that can estimate AoD at such a high accuracy.

6.2 Passive Localization
In this section, we evaluate the device-free passive localiza-

tion performance of mD-Track with a single pair of wireless

terminals (WARP or COTS Wi-Fi APs).

WARP performance. The results obtained usingWARP are

presented in Fig. 13. mD-Track 3D and 4D are respectively

able to achieve median localization errors of 0.36 m and

0.28m, with eight antennas and a 40 MHz bandwidth. To the

best of our knowledge, no prior Wi-Fi based systems have

demonstrated such a high accuracy with a single transceiver

pair for passive localization. We also compare mD-Track

with SpotFi. For a fair comparison, we implement an AoA

and ToF joint estimator based on SpotFi’s algorithm and

modify it to work with reflected signals. The median error

of SpotFi is 1.56m with eight antennas and 40 MHz. We can

see that even mD-Track 2D already achieves significantly

better localization performance than SpotFi.

COTS AP performance. The results obtained using com-

modity Wi-Fi APs are presented in Fig. 14. The COTS AP is

equipped with only three compared with eight on the WARP

platform. We use all three antennas of the AP but vary the

size of the bandwidths and the number of dimensions of mD-

Track to evaluate performance. As a comparison with WARP,

mD-Track 3D and 4D are still able to achieve a median error

of 0.67m and 0.48m with only three antennas.

Impact of dimensionality. Our system relies on the esti-

mated parameters to localize and track the target. Therefore,

accurate parameter estimation is the premise of accurate

localization and tracking. The parameter estimation is, how-

ever, severely affected by the separability or resolvability of

paths. We evaluate how the dimensionality and resolution

of each signal domain, i.e., time, angle and space, affect the

resolvability, and hence the localization accuracy.

Fig. 13 and 14 depict the localization error with varying

signal bandwidth (20 and 40 MHz), antenna count (3, 4 and 8)

and dimensionality (2D, 3D and 4D). We clearly see a trend

where higher numbers of dimensions lead to higher accuracy.

With the same bandwidth and antenna count (e.g. 8 antennas
and 40 MHz), mD-Track 4D achieves a much smaller median

error (0.28 m) compared with mD-Track 3D (0.36 m) and

2D (1.16 m). We see that increasing the number of anten-

nas or bandwidth can improve the performance. By fixing

the bandwidth (40 MHz) and doubling the antenna count

from 4 to 8 using WARP, mD-Track 3D reduces the median

error from 0.57 m to 0.36 m. By fixing the antenna count

(3), and doubling the bandwidth from 20 MHz to 40 MHz

using COST Wi-Fi AP, mD-Track 3D reduces the error from

0.89m to 0.67m. We emphasize that increasing the number

of antennas (or radio chains) and bandwidth significantly

increases the hardware overhead, especially for COTS device.

Increasing the dimensionality, however, does not incur any

extra hardware overhead.

Multi-target localization. Passively localizingmultiple tar-

gets in the same space is a well-known and challenging prob-

lem, especially when the targets are close to each other. The

capability of resolving signals from two nearby reflectors

(which we have demonstrated above), plays a key role in

multi-target localization. We ask two human to stand 0.5 m,

1 m, 2 m, and 3 m apart, and wave their hands. It is likely

that two targets even physically close-by, have different AoA,

ToF, AoD or Doppler, so that 4D mD-Track is able to resolve

signals from such two targets and successfully localize both

of them, achieving a median error of 0.51 m. As shown in

Fig. 15, mD-Track running on the WARP platform is able to

locate four targets simultaneously with a median error of

0.47 m when they are 3 m apart from each other. The error

is 0.94 m even when they are 0.5 m apart.

Detecting different types of motions. mD-Track is not

only capable of tracking the location, but also the motion

of the target. In this section, we present the performance of
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4D mD-Track on motion tracking using WARP. We test the

capability of detecting four types of motions with mD-Track.

In scenario one, we move the transmitter. In scenario two,

the locations of the transceivers are fixed and we let a human

target move towards and away from the receiver. In the third

and fourth scenario, the human target stands still and only

waves his hand and fingers back and forth, respectively. mD-

Track estimates the Doppler shift introduced by different

motions and the results are depicted in Fig. 16. In Fig.16 (a),

we see that mD-Track clearly resolves three multipath sig-

nals, and all three multipaths have non-zero Doppler shifts.

This is because when the transmitter moves, all the signal

paths have Doppler shifts. In Fig. 16 (b), when the human

target is moving, mD-Track resolves multiple paths and only

one has a non-zero Doppler shift, which is the signal reflected

from the human body. Similarly, in Fig. 16 (c), mD-Track re-

solves multiple paths and only one has a non-zero Doppler

shift caused by the hand movements. Comparing Fig. 16 (b)

and (c), we observe that the Doppler shift caused by hand

movements changes more quickly than the one caused by

human body movement. In Fig. 16 (d), we can see that even

the Doppler shift introduced by slight finger movements can

still be detected.

Multi-motion tracking. We demonstrate that mD-Track

can detect multiple the occurrence of multiple things moving.

We let two people stand and wave their hands at the same

time. mD-Track estimates the ToF, AoA, AoD and Doppler

shift of all the resolvable multipaths – the AoA, ToF and

Doppler results are shown in Fig. 17. We see three static

paths since their Doppler shifts are zero (one of them is

the direct path). There are four paths whose Doppler shifts

are non-zero – their ToFs and AoAs are different from each

other, which correspond to the four waving hands. The four

reflected signals from the hands are clearly resolved and the

parameters of each path are accurately estimated. mD-Track

can use Doppler shifts to detect, as well as ToF, AoA and

AoD to locate multiple motions at the same time. For each

mobile path, we can use their unique time domain Doppler

patterns (similar to Fig. 16), to classify pre-defined motions,

e.g., gesture recognition [26], activity tracking [40, 42], etc.

6.3 Computational complexity
According to our analysis on computational complexity in

Section 3.3, four parameters affect the computational com-

plexity of mD-Track: the number of channel paths, the num-

ber of iterations mD-Track takes to converge, the dimension-

ality of estimation, and the number of search steps in each

dimension. We run our estimation algorithm using channel

measurements collected from different experimental settings

and record the number of iterations, number of propagation

paths, and the execution time for each trace. Fig. 18 (a) plots

the number of iterations mD-Track performs before con-

verging. We see that mD-Track also converges within four

iterations 90% of the time for traces with three dominant

paths. mD-Track converges quickly within five, eight and

nine iterations even when there are five, eight and ten paths,

90% of the time. Fig. 18 (b) shows the overall end-to-end

execution time and we see that even with eight multipaths,

the median system latency is as small as 130ms .
Dimensionality and step size affect the number of com-

binations for searching. We fix the step sizes of frequency

to 0.1Hz, vary the step size of angle and time, and evalu-

ate the computational complexity of mD-Track 2D, 3D, and

4D, in comparison with SpotFi. mD-Track 2D estimates AoA

and ToF jointly, as SpotFi does. mD-Track conducts multiple

one-dimensional searches and thus runs much faster than

SpotFi that conducts multi-dimensional search, as depicted

in Fig. 18 (c). In our current implementation, we use a step

size of [0.02 rad, 0.5 ns, 0.1Hz] and as a result mD-Track 2D,

3D, and 4D run 30×, 20× and 14× faster than SpotFi.

7 RELATEDWORK
Indoor active localization. RSSI based indoor localization

techniques [7, 54] provide coarse localization accuracies.
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More advanced techniques [12, 51] make use of an antenna

array of APs [33, 56] to estimate the AoA of a signal. These

systems can achieve accuracies of decimeters, which, how-

ever, are vulnerable to multipath propagation because of the

poor resolvability due to the limited number of antennas.

Moving the antenna mechanically to emulate a large antenna

array is proposed [20], but the locations of most APs today

are still fixed and the antennas cannot move freely. The latest

ToF based systems [38, 47, 52, 53] also provide high accura-

cies by combining channels to form a virtual wider band-

width for finer resolution. However, the channel hopping

those systems depend on, does affect data communication

and there is only a total of 70 MHz frequency bandwidth

in the 2.4GHz spectrum. Prior systems in the field tries to

increase the resolution in one particular dimension. mD-

Track on the other hand jointly estimates multi-dimensional

information to achieve a much finer resolution.

Passive localization and motion tracking. A lot of

attentions has been paid to passive localization, gesture

recognition and Wi-Fi imaging in recent years. Acoustic

signal based solutions [36, 41, 57] can only work within a

few decimeters. Wi-Fi RSSI/CSI signature based passive lo-

calization systems [2, 6, 39, 40, 42, 46, 55] usually rely on

high-density deployments which are not realistic for large-

scale deployments. Wi-Vi [5] employs a signal nulling tech-

nique to cancel signals from static objects and then estimate

the AoA of the signal reflected off the human, which can

track the direction of human’s movement, but no location

information can be obtained. WiTrack [3, 4] and other sys-

tems [8, 16, 23, 37, 58, 59] use dedicated hardware with more

than 1 GHz bandwidth to achieve a high resolution ToF for

human tracking which is not possible with Wi-Fi. Although

WiTrack 2.0 [3] uses similar signal cancellation techniques as

mD-Track, mD-Track takes signal cancellation a step further

by integrating it with our iterative path refinement mecha-

nism, maximizing its efficacy.

WiSee [26] recognizes the human gestures by estimating

the Doppler shifts introduced to Wi-Fi signal by human ges-

tures. The key intuition of mD-Track and WiSee to address

Doppler estimation is the same – we need a long observation

time interval to extract a small Doppler shift. Specifically,

WiSee transmits multiple consecutive OFDM symbols (for

one second) and takes a large FFT over the received OFDM

symbols to estimate the small Doppler shift. Similarly, mD-

Track sends multiple packets and use the received LTFs to

estimate the Doppler shift. We note that mD-Track not only

provides motion related information, i.e., Doppler, but also
estimated location related information, i.e., AoA, AoD and

ToF, for every resolvable multipath.

While some recent systems [18, 19, 27, 35, 49] consider the

use of multiple parameters for object tracking, their systems

are designed to estimate fixed number of parameters, and

cannot be generalized easily to estimate parameters of more

dimensions, which mD-Track enables. Furthermore, the spa-

tial smoothing techniques adopted by some prior work in-

creases computational complexity significantly [18, 19]

8 CONCLUSION
mD-Track is a system that incorporates information from

as many dimensions as possible to advance the accuracy of

passive wireless sensing in a multipath environment. Our

experiments demonstrate greatly improved performance for

passive multi-target localization and motion tracking. We

have also demonstrated how mD-Track can support applica-

tions including gesture recognition and Wi-Fi imaging.
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