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ABSTRACT
This paper presents our experience in adopting recent research
results of mobile phone based indoor/outdoor detection (IODetec-
tor) to support the real world business of on-demand food delivery.
The real world deployment of the adopted IODetector involves
three phases spanning 20 months, during which the deployment
scales from a feasibility study across a few areas of interest to a city-
wide trial in Shanghai, and eventually to nationwide deployment
over 367 cities in China. Iterative development has been performed
throughout different deployment phases to excel the IODetector.
Large scale evaluation and comparative A/B testing suggest key
value of adopting indoor/outdoor detection in the real world busi-
ness. We also present the lessons learned from the deployment
experience including real world know-hows, practical limits and
constraints, as well as discussions on design alternatives.We believe
this paper provides insights to guide future efforts in translating
research results to industry adoptions.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Human-centered computing→ Ubiqui-
tous and mobile computing; • Networks → Location based
services; • Applied computing → E-commerce infrastructure.
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Figure 1: Three phase deployment of the IODetector.
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1 INTRODUCTION
Previous studies have explored the use of various sensors on smart-
phones to detect the indoor/outdoor status [8, 11, 17, 27, 30, 31, 37].
Although many potential applications have been suggested in the
literature including context aware sensing [16, 24, 36], adaptive
localization [9], daily activity profiling [26, 29, 34], there has not
been any reported experience in the commercial adoption of the
technology in real world. This paper presents our experience of
applying indoor/outdoor detection (IODetector) to the on-demand
food delivery industry [23], which to our knowledge is the first
of its kind. The adopted IODetector extends its original design as
proposed in [37] and primarily utilizes four sensing resources on
the food courier’s mobile phone including the light sensor, the
magnetometer, the cellular module, and the GNSS (Global Navi-
gation Satellite System) module in order to derive the real time
indoor/outdoor status of the courier. With accurate indoor/outdoor
knowledge of its fleet of couriers, the food delive ry platform is able
to make better optimized decisions in order assignment and as a
result achieve improved food delivery efficiency.

We work with Ele.me [15], the second largest on-demand food
delivery service platform in China with its business operating in
over 300 cities, a fleet of over one million food couriers in contract,
and generated revenue of 25.4 billion RMB in the fiscal year 2020
[19]. The deployment and evaluation of the IODetector have gone
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through three phases as illustrated in Figure 1. In Phase I, a feasi-
bility study was performed from Nov. 2019 to Dec. 2019, when we
finalized the basic architecture of the IODetector and evaluated its
performance with small scale experimentation at several areas of
interest in Shanghai city. In Phase II, the IODetector was integrated
into the operational App of all Shanghai couriers’ mobile phones
for a trial study and tested in their daily business routines. The trial
lasted from Jan. 2020 to May 2020, during which the IODetector was
evaluated based on ∼90,000 monthly active couriers in Shanghai
delivering 800,000 daily food orders. A total number of 2,895 differ-
ent phone models were involved in the study. In this stage, we dealt
with practical challenges arising from the scale of the deployment,
including the difficulty in obtaining groundtruths and the preva-
lence of corner cases that may impair the worst case performance.
The Phase III deployment started from Jun 2020 and has lasted ever
since. In this phase, the IODetector has been gradually launched
for Ele.me food couriers in 367 cities. We progressively refined the
parameter settings of the IODetector based on periodically updated
evaluation results. The up-to-date evaluation result has been ob-
tained from ∼1 million monthly active couriers with 4,861 different
phone models, which gives the average detection accuracy of 87.3%
indoors and 90.6% outdoors.

A comprehensive end-to-end A/B testing has been conducted
to further estimate the business benefit to the on-demand food
delivery industry from the IODetector. The results show that the
adoption of the IODetector shortens the average per-order delivery
time by 19 seconds and reduces the late delivery rate relatively by
5.64%, which translate to yearly profit gain of ∼11 million RMB
to the platform and yearly cost saving of ∼108 million RMB to
participating food couriers and restaurants.

The lessons learned through the IODetector deployment are
summarized as follows.

• We demonstrate the practical value of applying advanced
mobile sensing technology to commercial business and share
the real world know-hows of the application.

• We share our experiment methodology for obtaining large
scale ground truth references. We discuss our thoughts and
studies involved in devising the methodology.

• We show the prevalence of corner cases when a mobile sens-
ing system scales, and share our considerations in achieving
performance trade-offs between worst cases and overall per-
formance.

• We share our design considerations when translating the
research advances. In particular we comparatively study
the machine learning based and rule based mobile sensing
solutions when it comes to practical adoption.

The rest of this paper is organized as follows. Section 2 presents
the background of the on-demand food delivery industry and the
initial design of the IODetector. Section 3 introduces our three-
phase deployment and re-development experience of the IODetec-
tor along with the business benefit evaluation and analysis. Section
4 discusses the lessons learned from the deployment experience and
the expected future research topics. Section 5 reviews the related
works and Section 6 concludes this paper.

Customer
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Platform

Courier

Status

Order placement

Order received Food ready

Order pool
Order assignment

Receiving the assignment

Reaching the restaurant Delivering food

Food received

Arriving at the customer

Time 𝑡! 𝑡" 𝑡# 𝑡$ 𝑡% 𝑡&

indooroutdoor

Figure 2: The food order servicing cycle.

2 IODETECTOR FOR ON-DEMAND FOOD
DELIVERY SERVICE

2.1 On-demand Food Delivery
The on-demand food delivery business features extremely high
timeliness requirements with huge order amounts unevenly dis-
tributed in time and space (over 10 million orders per day with less
than 40 minutes average delivery time on Ele.me platform). A smart
order dispatch strategy is necessary to best match the food orders
and couriers in real time to improve delivery efficiency.

To serve the purpose of efficient order dispatch, one of the most
important problems is how to accurately track courier status? Figure
2 illustrates the basic information flow of a food order servicing cy-
cle. Once a customer places a food order online at 𝑡0, the restaurant
receives the order and starts preparing the food. The platform, at
the same time, puts the order in a temporary order pool containing
all the orders generated within the past 1~2 minutes. Once the pool
is full or the time expires, the platform considers the current courier
status, the geographic distribution of orders as well as other related
information to make order assignments to each courier. When the
courier arrives at the restaurant at 𝑡2, if the food is ready, he/she
picks up the food, leaves the restaurant at 𝑡4 and reaches the cus-
tomer at 𝑡5 to complete the delivery. Note that in practice, a courier
usually has multiple food orders on hand at a time. For example,
the courier may receive new order assignments when delivering
a previous order. Knowing time points 𝑡2~𝑡5 is thus very valuable
for the online dispatching algorithm to make subsequent assign-
ments. The exact knowledge of 𝑡2~𝑡5, however, is not possible to
the platform and can only be inferred according to courier statuses.
The indoor/outdoor context of the courier segments its trajectory
and helps identify the key time points (𝑡2~𝑡5) within certain time
ranges which helps the order dispatching platform best estimate
𝑡2~𝑡5 and assign subsequent orders accordingly.

2.2 Initial Design
The initial design is extended from the original design of the IODe-
tector [37], the first and the most impactful work for generic in-
door/outdoor detection with smartphone sensors. The adopted
IODetector makes use of three energy-efficient mobile phone sens-
ing resources, i.e., light sensor, cellular module and magnetome-
ter, which according to real-world measurement and experiment
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Table 1: Three phase deployment of the IODetector.

Metric
Phase Phase I: Feasibility study

(Nov. 2019.11 - Dec. 2019)
Phase II: Citywide deployment

(Jan. 2020 - May 2020)
Phase III: Nationwide deployment

(Jun. 2020 - present)
5 iPhones and 15 Android phones
2 areas of interest in Shanghai

Over 250𝑘 phones comprising 2,895
phone models in Shanghai

Over 3 million phones comprising 4,861
phone models in 367 cities of China

Participants 20 research assistants
and couriers

90𝑘 monthly active
couriers in Shanghai

1 million monthly active
couriers over 367 cities

Design
upgrade

GNSS input integrated and
cellular sensor upgrade

Improved use of GNSS as well
as parameter optimization

Improved use of magnetic field signal
as well as parameter refining

Detection
accuracy

88.5% indoors,
91.3% outdoors

85.1% indoors,
88.9% outdoors

87.3% indoors,
90.6% outdoors

Efficiency
improvement N.A. N.A. Avg. delivery time reduction:19 secs/order,

Relative late delivery rate reduction: 5.64%

[30, 37] exhibit different and distinct data patterns indoors or out-
doors. Outdoor light, primarily the natural sunlight in the daytime,
has wider spectrum and is of higher intensity in nature, while in-
door light is primarily artificial light, and is of much lower intensity.
The mobile phone cellular signal from the ambient cell towers may
significantly increase (> 10𝑑𝐵) when the mobile phone user moves
from indoor to outdoor and decrease from outdoor to indoor due
to the signal blockage. The indoor Earth magnetic field signal is
heavily distorted due to the existence of steel construction and
electrical appliances but not when outdoors.

Figure 3 illustrates the main design rationale of the IODetector,
which inherits the main framework from our previous work [37].
The indoor/outdoor context of the courier is firstly estimated sepa-
rately by each of the three sensors and the final detection result is
a weighted combination of the outputs of the three sensors based
on their confidence levels1. The confidence level of the output of
each sensor is a normalized value from 0 to 1, where 1 indicates the
highest confidence and 0 indicates the lowest. For each detection,
the IODetector considers the sensor readings in the past𝑤 seconds.
For the light signal, the IODetector measures the light intensity
𝐿 and compares it with a threshold 𝛼 to decide indoor or outdoor
status. The light sensor detection confidence is lowwhen at night or
not available when the mobile phone is identified in a pocket (with
proximity sensor). For the cellular signal, the IODetector measures
the signal variation ΔC and compares it with a threshold 𝛽 to decide
indoor or outdoor status. The IODetector uses the magnetometer
to measure the signal variation of the ambient Earth magnetic field
ΔM and compare with a threshold 𝛾 to decide indoor or outdoor
status. Due to the nature of the Earth magnetic variation, the indoor
status is reported with high confidence but the outdoor status is
reported with low confidence. The IODetector further extends the
design by implementing a fourth sensor based on mobile phone
GNSS module input, which will be detailed in Section 3.1.

3 DEPLOYMENT EXPERIENCE
Since Nov. 2019, we launched the IODetector deployment in three
consecutive phases, i.e., feasibility study phase (Phase I, Nov.-Dec.
2019), city scale deployment phase (Phase II, Jan.-May 2020), and
nationwide deployment phase (Phase III, Jun. 2020 - present). Table
1We encourage readers to also read [37] to gain a more comprehensive understanding
of the design rationale and technical considerations.
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Figure 3: The design of the adopted IODetector.

1 summarizes key particulars during the three phase IODetector
deployment. In the following, we will present the design upgrades,
the scale of deployment, real-world evaluation methodology and
the IODetector performance, and the efficiency improvement for
food delivery.

3.1 Phase I Deployment
In Phase I, we deploy and evaluate the IODetector from a feasibility
study perspective. We engage 20 participants including 10 research
assistants and 10 Ele.me food couriers, and test the performance of
the IODetector in two city plaza areas in Shanghai which contain
shopping malls, office buildings, and various indoor/outdoor zones.
The testing mobile phones comprise 5 iPhones and 15 Android
phones of different models. Since the light sensor readings and
satellite information are not available from iOS APIs, we deploy a
simplified version for iPhone. The study was conducted for four
weeks from Nov. to Dec. 2019.

IODetector design upgrade. We make the following design
upgrades.

GNSS sensor. The Ele.me platform already employs GNSS mod-
ules of couriers’ mobile phones to update location information, so
we decide to leverage the GNSS input and integrate that as a fourth
sensor into the IODetector. No extra energy consumption is in-
curred. Thanks to the deployment of GPS [5], Beidou [1], GLONASS
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[4], and Galileo [3] system, over 100 positioning satellites presently
orbit the Earth at the height of ∼20,000𝑘𝑚 and are available to
provide a reference signal. We may differentiate satellites from
different systems based on their pseudorandom noise (PRN) codes
or space vehicle numbers (SVN). The current implementation of
the IODetector only uses GPS input for phone compatibility rea-
son, but can be easily extended to work with other GNSS inputs
when needed. As Figure 3 illustrates, an extra GNSS based sensor
is added. We consider both the number of visible satellites 𝑆𝑁 and
the received 𝑆𝑁𝑅, and threshold them with 𝛿 and 𝜀, respectively.
If 𝑆𝑁 > 𝛿 and 𝑆𝑁𝑅 > 𝜀, the sensor outputs outdoor with high
confidence. If 𝑆𝑁 < 𝛿 and 𝑆𝑁𝑅 < 𝜀, it outputs indoor with high
confidence. Otherwise, it outputs indoor or outdoor with low con-
fidence. The output of the sensor is weighed in when aggregated
with the outputs from the other three sensors to derive the final
result.

Cellular sensor. During the feasibility study, we also observe that
the effectiveness of the cellular sensor may be impaired due to
unexpected disruption to the line of sight from the serving base
station to the mobile, e.g., when the mobile turns around a corner.
As a result, the sudden drop of signal strength (at ~15-30dB) of one
certain cell tower may lead to wrong estimated outdoor-indoor
transition, especially when that cell tower is highly weighted. We
revise the estimation logic of the original cellular sensor and take
into consideration the signal consistence across multiple cell towers.
The IODetector monitors the signal variation of all visible cell tow-
ers and trusts more on the cellular sensor with consistent variations.
In each detection window, 𝑛 (mostly 4~7 in practice) signals from
neighboring cell towers are used in addition to the one that the
mobile is associated with. The weight of the associated cell tower
𝑐𝑎 is set to𝑤𝑎 , and the total weight of all neighboring cell towers
(𝑐1~𝑐𝑛) is set to 1 −𝑤𝑎 . For each cell tower 𝑖 , its output indicator 𝑒𝑖
is thereafter determined by the signal variation 𝑠𝑣𝑖 :

𝑒𝑖 =


1 if 𝑠𝑣𝑖 > 𝛽 , i.e., outdoor;
−1 if 𝑠𝑣𝑖 < −𝛽 , i.e., indoor;
0 otherwise, i.e., unchanged/unknown.

(1)

Assembling the results from all cell towers, the output of the cellular
sensor with confidence is 𝑂𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 = 𝑒𝑎 ∗𝑤𝑎 + (1 −𝑤𝑎)

∑𝑛
𝑖=1

𝑒𝑖

𝑛
,

which thus has varied dependence on themain cell tower the mobile
is associated with and other observable neighboring cell towers.

IODetector for iPhone. Due to the constrained sensor exposure
from the limited iOS APIs where the detailed information of light

signal, satellite signal and the neighboring cellular signal is not
available, we have to adopt a much simplified algorithm for iPhones,
where the variation and calibration accuracy of the magnetic field,
the signal of the main associated cell tower, and the estimated
localization error are used to estimate the indoor/outdoor status.

Performance evaluation. We evaluate the performance of the
IODetector with 60 walking traces collected from the 20 partici-
pants, who are advised to manually label their movement trajec-
tories as groundtruth. In particular, the 10 recruited couriers are
advised to walk through similar paths as they normally do when
delivering food orders. The overall cumulative distribution function
(CDF) of the indoor/outdoor detection accuracy is plotted in Figure
4. The average detection accuracy is 88.5% for indoors and 91.3%
for outdoors. The proportion of iPhones among the phones used
by Ele.me couriers varies from 10% to 25% in different cities. The
average detection accuracy with Android phones is 92.9%, which
is much higher than that with iPhones (77.1%), mainly due to the
sensing constraints we face with iPhones. The results suggest the
high potential of the IODetector for large scale deployment.

3.2 Phase II Deployment
After the feasibility study, in Phase II we deploy the IODetector
into the food delivery routine of all Ele.me couriers in Shanghai.
The Phase II deployment lasted from Jan. 2020 to May 2020. We
tested the IODetector in the wild with ∼90𝑘 monthly active couriers
delivering ∼800𝑘 food orders in Shanghai every day. A total number
of over 250𝑘 mobile phones of 2,895 different models were tested
in this phase.

IODetector design upgrade. To build the IODetector into the
Ele.me food delivery routine, we integrate the IODetector in the
Fenginao App [15] - a mobile phone app used by Ele.me couriers
to receive order assignments, manage order operations, and update
availability for assignments (e.g., active or resting). The IODetector
build-in outputs the courier’s indoor/outdoor status every second,
and the result is uploaded to the Ele.me cloud platform periodically.
Couriers are aware of the data collection [2] and for the IODetector
we collect only the indoor/outdoor detection result when their
working status is active. No raw sensor data is collected. We finalize
the window size of each detection. In reality, the optimal window
size varies with both the environment and the moving speed of the
courier. As the detection accuracies for window sizes of 7~13 are of
little difference as suggested by the experimental results shown in
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Figure 5, we use a fixed window size of𝑤=9 seconds for reliability
consideration.

Performance evaluation. We evaluate the performance of the
IODetector with Ele.me food delivery routine. The ground truth is
collected in two different ways.

Vision-assisted labels. As depicted in Figure 6, we let couriers
wear cameras on the chest to record videos during their daily work.
We use the HNSAT UC-30 mini camera that can rotate 180° and
gives full HD 1920*1080P video. Due to the high overhead and cost,
we recruit 10 Ele.me couriers for one week. They deliver food orders
in 3 AoIs (areas of interest), to provide ∼5,000 in-situ video clips
(∼420 hour video footage in total) in the experiment from which
we recover precise traces of their indoor/outdoor statuses.

Inferred labels. The vast majority of the groundtruth labels used
in the evaluation are inferred labels. We rely on the indoor BLE
beacon infrastructure which has earlier been deployed by Ele.me
in certain restaurants and shopping malls to audit the arrival of
food couriers to those PoIs [13, 14]. There are currently over 860𝑘
beacon devices in use. Receiving the beacon signal with RSSI above
the threshold gives positive labels of indoor status. We also examine
the moving speed of the courier and infer positive labels of outdoor
status when the moving speed is continuously above the threshold
because Ele.me couriers ride standard e-bikes when moving on
roads.

While the vision-assisted labels provide holistic indoor/outdoor
profiles along the couriers’ movement trajectories but are limited in
size, the inferred labels only provide sporadic reference tags mostly
near indoor PoIs but enable city scale and nationwide evaluation
due to the high data scale.

The overall CDF of the indoor/outdoor detection accuracy is
plotted in Figure 7. The average detection accuracy is 85.1% for
indoors which is 3.4% lower than that in Phase I, and 88.9% for
outdoors which is 2.4% lower than that in Phase I. The decrease
of detection accuracy is mainly due to the prevalence of corner
cases that may yield low accuracy (the tail of the CDF in Figure
7). Our efforts to trade average accuracy for improved worst case
accuracy also lead to the reduction of average accuracy. Figure 8
presents the geographical diversity of the detection accuracy in 552
AoIs across Shanghai city. Although we do not have the complete
groundtruth of the entire city of Shanghai, the inferred labels from
many scattered AoIs over the city allow us to derive accuracy across
those regions.

3.3 Phase III Deployment
We started the Phase III deployment from June 2020, during which
the IODetector was gradually built into the Fengniao App of all
Ele.me couriers across the country. Till now, the deployment has
engaged ∼1 million monthly active couriers across 367 cities in
China. A total number of over 3 million mobile phones of 4,861
different models have been involved. Figure 9 visualizes the nation-
wide deployment of the IODetector achieved at three stages - (i)
Jun. 2020, the first month when we dealt with compatibility issues
and deployed the tool in 30 major cities; (ii) Jan. 2021, the seventh
month when we fine tuned system parameters and expanded the
deployment scale to 311 cities; (iii) Jul. 2021, the thirteenth month
since when we have arrived at the deployment scale to 367 cities
till now.
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Table 2: System overhead for the IODetector built-in.

Fengniao SDK
(test scenario) Size Power

consumption
CPU user time
(minute, second)

CPU system time
(minute, second)

WiFi / cellular
transmission

w/o IODetector (static) 170kB 93.2 mAh 8m 36s 3m 26s 2.09MB
w/o IODetector (mobile) 170kB 106.9 mAh 7m 42s 4m 12s 3.33MB
with IODetector (static) 194kB 95.1 mAh 8m 56s 3m 45s 2.18MB
with IODetector (mobile) 194kB 109.1 mAh 9m 16s 4m 56s 3.56MB

IODetector design upgrade. Since China has a vast territory
and the signal conditions (in particular GNSS and cellular signals)
at different cities may slightly vary, we fine-tune the system param-
eters across different cities to ensure reliability and efficiency. The
measured signal strength of the magnetometer varies with both the
environment distortion to the geomagnetic field and the orientation
of the mobile phone itself. The confidence on the magnetometer
sensor output degrades with the phone orientation dynamics. In
the updated IODetector the overall change of the phone orientation
is thus considered in addition to the signal strength to derive the
confidence on the magnetometer output.

Performance evaluation. We evaluate the performance of the
IODetector based on the data from 367 cities. The ground truth
is primarily derived based on the inferred labels as described in
Section 3.2. The overall CDF of detection accuracy is plotted in
Figure 10. The average detection accuracy is 87.3% for indoors and
90.6% for outdoors, both slightly higher (by 2.2% for indoors and
1.7% for outdoors) than that in Phase II. We believe the accuracy
increase is mainly due to the system fine-tuning and also the fact
that the complicated environment is more prevalent in Shanghai.
Figure 11 presents the latency in the detection during the indoor
outdoor transition, which tells the responsiveness of the IODetector.
The median detection latency of indoor to outdoor transition is 13
seconds and that of outdoor to indoor transition is 21 seconds. The
detection latency is mainly due to the signal sensing inertia during
the indoor/outdoor transition.

System overhead. The IODetector is a built-in component of
the mobile data collection SDK in the Fengniao app. Figure 12
summarizes the energy consumption of mobile phones with and
without the integration of the IODetector. We compare the phone
battery drains for iPhones and Android phones, and the data is
collected from 20 mobile phones during a comparative study where

the fully powered phone is completely depleted. We see from the
figure that the use of the IODetector has a statistically insignificant
impact on the energy consumption. The differences in both the
median and mean of the battery drain rate is within 0.15%.

The Battery Historian [18] is used to derive more details of
the size, power consumption, communication and computation
overhead of the SDK before and after integrating the IODetector.We
investigate the system overhead of the two different SDK versions
(with and without IODetector) with two settings, i.e., the static and
mobile scenario, where the test phones are placed still or moved
with Ele.me couriers for one hour. Table 2 summarizes the average
testing results across all tested phone models for different settings.
The CPU user time is the amount of time CPU spent in running
the SDK code and the CPU system time is the amount of time CPU
spent in running the kernel functions connected to the SDK. We
see little differences in size, power consumption, CPU user time,
CPU system time and the amount of data transmissions between
the SDK versions before and after integrating the IODetector in
both the static and mobile scenario. In all tests, the power used for
screen-on (50%~60%) and wireless transmission (25%~30%) accounts
for the majority (80%~90%) of the total power consumption.

3.4 Business Benefit
As previously discussed in Section 2, the IODetector’s indoor out-
door outputs may contribute to estimating critical business pa-
rameters including the ETS2 (Estimated Time of Stay) and ETA
(Estimated Time of Arrival) of couriers. As Figure 2 illustrates,
𝐸𝑇𝑆 = 𝑡4 − 𝑡2 and 𝐸𝑇𝐴 = 𝑡5. The food delivery platform incorpo-
rates the estimation of these parameters with other information
including the orders in the temporary order pool, courier previous

2In Ele.me, there is a set of ETS parameters including ETS at malls, ETS at restaurants,
etc. In this paper we use the ETS at restaurants as an example.
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Table 3: Real world A/B testing for business benefit analysis.

Metric
Order sets A1

(w/o IODetector)
A2

(w/o IODetector)
Difference
(A2−A1)

B
(with IODetector)

Difference
(B−A1)

Order amount 425315 448441 - 842345 -
Average delivery time 31.17 mins 31.12 mins -3 secs 30.86 mins -19 secs
Average time_lunch 38.28 mins 38.37 mins 5 secs 38.03 mins -25 secs
Average time_1500m 36.08 mins 35.93 mins -9 secs 35.54 mins -32 secs
Average time_3000m 42.59 mins 42.49 mins -6 secs 41.74 mins -51 secs
Late delivery rate 10.46% 10.38% -0.08% 9.87% -0.59%

Late delivery rate_lunch 12.78% 12.66% -0.12% 12.06% -0.72%
Late delivery rate_1500m 14.00% 14.10% 0.1% 13.23% -0.77%
Late delivery rate_3000m 16.16% 16.07% -0.08% 14.62% -1.53%
Order reassignment rate 4.55% 4.59% 0.04% 4.52% -0.03%
Reassignment rate_lunch 5.67% 5.68% 0.01% 5.70% 0.03%
Reassignment rate_1500m 5.25% 5.41% 0.16% 5.26% 0.01%
Reassignment rate_3000m 5.87% 6.13% 0.26% 6.03% 0.16%

records, traffic conditions, etc., in its dispatching algorithm to find
a match between food orders and couriers. Better estimation of the
ETS and ETA significantly impact the quality of order dispatch, and
thus the business operation cost and profit [38].

Real world A/B testing. During Phase III deployment, we also
launch a real world A/B testing to evaluate the impact of the IODe-
tector on Ele.me food delivery efficiency. The test was conducted
during 22th to 26th of July in 2020 in three major cities in China,
namely Shanghai, Beijing and Hangzhou. During the experiment,
a total number of ∼1.7 million food orders from the three cities
were examined. We randomly assign them into 2 groups, orderset
A and B, respectively. Each orderset contains ∼50% of the total
orders. Orderset A is used as the control group, where the orders
are assigned to couriers without using the IODetector output, and
B is used as the test group, where the orders are assigned by the
platform based on the IODetector calibrated ETS and ETA. Order-
set A is further divided into subgroup A1 and A2, each of which
contains ∼25% of the orders, for comparison. The overall result of
the test is summarized in Table 3. The key performance indicator
for on-demand food delivery business includes three major metrics,
i.e., the average delivery time (𝑇 ) of each order, the late delivery
rate (𝐿𝑅) of orders, and the order reassignment rate (𝑅𝑅).

Average delivery time. As Table 3 presents, the overall aver-
age delivery time difference between A1 and A2 is 3 seconds and
the delivery time reduction from A1 to B is 19 seconds. Further
analysis shows that the time reduction from A1 to B is 25 seconds
for peak-hour orders at lunch time (Average time_lunch), 32 sec-
onds for orders with delivery distance longer than 1500𝑚 (Average
time_1500m), and 51 seconds for orders with a delivery distance
longer than 3000𝑚 (Average time_3000m). For comparison, the dif-
ference between the control group A1 and A2 is consistently below
10 seconds (mostly below 6 seconds). The result indicates the statis-
tical advantage of the IODetector in reducing the average delivery
time. The benefit is higher for peak-hour orders and long-distance
orders.

Late delivery rate. The late delivery rate measures the ratio of
orders that are not delivered within the pre-estimated time duration.
As Table 3 presents, the overall late delivery rate is reduced from

10.46% at orderset A1 to 9.87% at orderset B, which gives 0.59%
reduction. With further analysis, we see that the late delivery rate
reduction from A1 to B is 0.72% for peak-hour orders at lunch
time (Late delivery rate_lunch), 0.77% for orders with a delivery
distance longer than 1500𝑚 (Late delivery rate_1500m), and 1.53%
for orders with a delivery distance longer than 3000𝑚 (Late delivery
rate_3000m). Meanwhile the differences between the control group
A1 and A2 remain below 0.12% for all types of orders. We perform a
comparison between the late delivery rate distribution of A1 and B.
The relative uplift is 𝐿𝑅𝐵−𝐿𝑅𝐴

𝐿𝑅𝐴
= 5.64% and the Z-Score difference

is 𝐿𝑅𝐵−𝐿𝑅𝐴

𝜎 = −11.08, where 𝜎 is the standard deviation. The result
suggests 95% confidence in the IODetector advantage in reducing
the late delivery rate relatively by 5.64%.

Order reassignment rate. The order reassignment rate indi-
cates the ratio of reassigned orders over all previously assigned
orders. The reassignment may take place due to various factors
including food delay in restaurants, accidents or exceptions of couri-
ers, traffic incidents, etc. According to Table 3, the differences of
the order reassignment rates between A1, A2, and B are mostly
below 0.2% for all scenarios. The results do not suggest the obvious
benefit of reassignment rate reduction from the IODetector.

Business benefit.We estimate the business benefit of the IODe-
tector by translating (i) the gain on the reduction of the average
delivery time into the saved time for serving extra food orders and
(ii) the reduced late delivery rate to the reduced penalty due to
customer complaints or negative service ratings.

Benefit to the platform. The IODetector reduces the average de-
livery time of each order by 19 seconds. According to the sta-
tistics, the average delivery time per order is 31 minutes with
a profit of 0.3 RMB. The number of food orders on Ele.me plat-
form is 10 million per day. The average delivery time reduction
of 19 seconds thus translates to an extra profit to the platform as
19

31×60 × 107 × 0.3 × 365 ≈ 11.2 million RMB.
Benefit to the courier/restaurant. The IODetector reduces the late

delivery rate by 0.59%. Assuming the penalty for a late delivery
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order is 3 RMB3, the yearly penalty savings of late deliveries can
be estimated as 0.59% × 107 × 365 × 3 ≈ 64.61 million RMB. In
addition, based on the business experience, we assume that 10% of
the late delivery events may lead to a negative rating or customer
complaints to the service. Assuming 20 RMB penalty to every such
event 4, the extra penalty savings can be estimated as 10%×0.59%×
107 × 365 × 20 ≈ 43.07 million RMB. The total amount of savings
are approximately 64.61 + 43.07 = 107.68 million RMB.

In addition to the quantitative profit and cost saving, higher
delivery efficiency would further improve the customer experience,
encourage the participation of more restaurants and couriers, and
establish competitive advantages for the platform in the long term
business.

Other business applications. As a general tool for indoor out-
door trajectory segmentation, the IODetector is also beneficial to
other business applications in addition to estimating ETS and ETA.
The output of the IODetector can be an essential input for various
knowledge discovery models in Ele.me including discovering build-
ing entrances for courier route planning, arbitration for dispute
in late food preparation and delivery, and building profiling for
business upgrade.

4 LESSONS LEARNED
We present the lessons learned throughout the IODetector deploy-
ment experience, based on which we discuss possible future re-
search topics.

4.1 Real World Know-hows
Translating research results into commercial adoption involves
abundant experience in addressing real world problems, through
which we gain know-hows in practicing large scale mobile sensing.

Sensor selection. The three initially used sensors, i.e., light
sensor, cellular module and magnetometer, contribute differently
to the final detection result with various circumstances. During the
daytime, the unobstructed light sensor is highly effective. Accord-
ing to our measurement results with 2,136 mobile phone models,
the average intensity of outdoor light on cloudy days is 1,648 lux
compared with the 587 lux of indoor light. The 5th percentile out-
door light intensity is 1,031 lux compared with the 95th percentile
of indoor light intensity at 847 lux. The cellular sensor provides
general indication when the mobile user transits between indoors
and outdoors, which however may be compromised when the user
continuously sojourns around the semi-outdoor environment. The
magnetometer generally performs well with steel structured build-
ings with abundant electrical appliances, but may fail with indoor
spaces lacking those materials. Our experimental statistics with
typical shopping malls show 93.3% accuracy in detecting such envi-
ronment when the mobile phone is nearby the steel or electrical
appliances. Apart from the sensors currently used in the IODetector,
we also considered in the design stage other smartphone embedded
sensors including the WiFi interface, barometer, etc, which were
not included mainly due to the low utility, e.g., nowadays WiFi

3In practice, the penalty depends on the actual delay in the event of late delivery. We
use a median value of 3 RMB based on statistics.
4The penalty for customer complaints is normally higher than that of negative ratings,
but we treat them equally for simplicity.

APs have been widely deployed indoors and outdoors leading to
indistinguishable WiFi signals.

GNSSmodule. The GNSS based sensor in the IODetector signifi-
cantly improves the detection accuracy as compared with the initial
design of the IODetector. The rationale is that due to the signal
blockage of walls, the indoor SNR and visible satellite number SN
are much lower. According to the comparative evaluation, the inclu-
sion of the GNSS module improves the detection accuracy by 13%.
On the other hand, the GNSS module introduces an extra signal
sensing delay of 5~20 seconds during indoor/outdoor transitions, in
particular for outdoor-to-indoor transitions. For applications with
strong low latency requirements, the GNSS based sensor may have
to be switched off.

Diversity. The diversity in phone models, usage styles, and
environment is high, and contributes to the deviation of the end
performance. Based on our analysis of the data from over 3 million
phones of 4,861 models, the IODetector detection accuracy may
vary from 10.2% to 99.9% with an average of 87.0% and a standard
deviation of 13.4%. The IODetector’s performance from 1,398 couri-
ers over one month (without changing their phones) shows that
the standard deviation of the detection accuracy from the same
courier may vary from 2.7% to 6.5%, mainly due to the varied phone
placement across time. The IODetector’s accuracies across the three
major cities in China, namely Beijing, Shanghai, and Shenzhen are
86.5%, 87.3%, and 88.4%, which shows the impact of geographical
and environmental diversity. In our deployment, we use adaptive
parameter settings across phone models and city environment to
mitigate the deviations.

Groundtruth labeling. As mentioned in Section 3.2, evaluat-
ing the IODetector in real world faces the challenge of collecting
large scale groundtruth. Throughout the deployment, we planned a
variety of practical methods in groundtruth labeling, assessed the ef-
fectiveness of those methods, and adopted the effective and efficient
ones among them. We detail our considerations and experience in
Section 4.2.

Corner cases. The IODetector performance is subject to var-
ied operating parameters and real world usage diversity. In the
deployment, we spotted prevalent corner cases where the detection
accuracy is much lower than the expected which limit the IODetec-
tor performance, especially among the low performance cases. We
detail their impact on the application goal as well as some of our
efforts in combating them in Section 4.3.

4.2 Groundtruth Labeling
Labeling methodology. Other than manual groundtruth collec-
tion, we leveraged two different ways to obtain groundtruth labels
during the deployment. As Section 3.2 describes, the vision-assisted
labeling provides full recordings of courier movement trajectories
and derives very accurate groundtruth labels from them. The cost
of vision-assisted labeling however is too high for large scale evalua-
tion. In addition to the hardware cost and overhead of mounting the
hardware in the daily activities, we engaged external contractors
to annotate the collected ∼420 hour video footage, which costed
over 2 weeks and 100,000 RMB. It is hard to apply to massive eval-
uation. The inferred labels, despite of being not as accurate as the
vision-assisted labels or not complete in terms of the coverage in
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Figure 13: Study of crowdsourcing the groundtruth labels.
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Figure 14: Improving GNSS performance in corner cases.

space, provides us large-scale observation, with which we were
able to evaluate the IODetector’s performance in a vast number
of areas of interest. The BLE beacon infrastructure used to infer
indoor labels was deployed during Jan. 2018 to Apr. 2020. It covers
~34% of the registered restaurants in Shanghai and much lower in
other cities. The deployment cost of each beacon is ~9.5 US dollars,
including 8 dollars for hardware, 1 dollar for transportation and
0.5 dollars for deployment. About 160 million outdoor labels from
~53,000 couriers and ∼10 million indoor labels from ~10,000 couriers
in Shanghai can be inferred throughout a day. The vast majority of
the groundtruth labels for nationwide performance evaluation are
inferred labels.

The label inference methodology is not built into the IODetector
design itself because the IODetector is supposed to be solely based
on the food couriers’ mobile phones for general application. The
indoor label inference depends on the availability of the BLE in-
frastructure and is thus not generally applicable. The outdoor label
inference is based on moving speed which is only available when a
courier rides the e-bike and is thus not complete.

Crowdsourcing labels. We also examined the possibility of
crowdsourcing groundtruth labels from the couriers themselves.
We interviewed 82 couriers to understand their willingness in con-
tributing to labeling their own indoor/outdoor statuses. Figure 13(a)
summarizes the willing rate with regard the incentives (n RMB). It is
shown that the willingness increases with the provided incentives,
and the survey projects to a monthly cost of at least 150,000 RMB
to gain 10~20% labels from the test data. We launched a mini trial
with 4 recruited food couriers to label the data with different incen-
tives (n = 0, 1, 2, and 5 RMB). Figure 13(b) plots the quality of the
crowdsourced labels when verified with the vision-assisted labels.
Interestingly, we see no correlation between the label quality and
the amount of incentives paid. The highest quality (89%) is obtained
from the labels from a courier receiving 1 RMB incentive per label,
and the lowest quality (44%) is obtained from the courier with 2
RMB incentive per label. The overall label quality is not adequate
to reflect the groundtruth. Their feedback is not accurate/reliable,
and also incurs extra manpower overhead from couriers, which is
not preferred in Ele.me business. According to the cost and qual-
ity analysis, we finally concluded that crowdsourcing groundtruth
labels from the couriers is not feasible and dropped the plan.

Future research.We expect future studies on how traditional
crowdsourcing solutions may be complemented with unsupervised
or self-supervised learning technology [35] to deal with the scale
of unlabeled data that we face.

4.3 Corner Cases
The prevalent corner cases, mainly due to real world diversity as
discussed in Section 4.1, lead to performance degradation. As Figure
7 and Figure 10 in Section 3 suggest, the low-performance cases
of the IODetector constitute a long tail of its overall accuracy. The
10th percentile accuracies in Phase II and III drop to 73.4% and
79.2%, respectively. We make the following attempts to improve the
corner case performance.

We tackle the corner cases with miss interpreted GNSS signals.
Figure 14(a) illustrates two types of such corner cases when the
building has a glass roof (Building A) or glass wall (Building B).
Although the phone stays indoors, it may still receive high SNR
satellite signals (e.g., satellite 𝑥). To address such corner cases, we
develop a solution that takes into consideration the directions of
satellite signals. As Figure 14(a) illustrates, the mobile phone may
receive high SNR signals from one direction (e.g, satellite 𝑥 ), but due
to concrete blockage only low SNR signals from other directions
(e.g., satellite 𝑦). We estimate whether a majority of satellite signals
come from similar directions, e.g., within a cone as suggested in
Figure 14(b), which highly suggests indoor phone placement but
with signal penetration from glasses or similar circumstances. As
Figure 14(b) illustrates, the azimuth 𝜃𝑎 and elevation 𝜃𝑒 are used
to estimate the signal direction. We consider the maximum and
minimum value of the azimuth 𝜃𝑎 and elevation 𝜃𝑒 of satellite
signals. If 𝜃𝑚𝑎𝑥

𝑎 − 𝜃𝑚𝑖𝑛
𝑎 > 𝜃1 and 𝜃𝑚𝑎𝑥

𝑒 − 𝜃𝑚𝑖𝑛
𝑒 > 𝜃2, the satellite

module outputs outdoor with higher confidence and less otherwise,
where 𝜃1 and 𝜃2 are empirically set to 150° and 60°, respectively
in current IODetector design. After upgrading the GNSS sensor
design, the 10th percentile detection accuracy is increased by 3.1%
while the overall average is reduced by 0.1%, which we believe is
a worthwhile trade-off because the low-performance cases are a
major limit to the IODetector utility in business.

We also tackle the corner cases when diverse and unreliable sen-
sor readings across phone models are experienced. After the wide
system deployment, we observe prevalent diversity in light sensor
readings across different phone models. The distributions of light
intensity measurements from different mobile phone brands differ.
As an example, Figure 15 plots the probability distribution function
(PDF) of the measured outdoor light intensity from three different
phone brands (with over 500 specific phone models involved in our
test) during one day operation, i.e., HONOR (with 122 phone mod-
els), HUAWEI (with 232 phone models) and OPPO (with 149 phone
models), which are the top-3 phone choices of Ele.me couriers. The
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Figure 16: Comparing ML-based and rule-based solutions.

measured light intensity distribution of HONOR phones is simi-
lar to that of HUAWEI phones, but both differ from that of OPPO
phones. Such diversity is prevalent, and lead to underperforming
cases for certain phone models. Based on the statistics, we re-assign
differently fine tuned light sensor thresholds for the top 5 mobile
phone brands, which account for over 90% of the phone models
used by Ele.me couriers. We also identify a few phone models which
give unreliable light sensor readings or experience frequent sen-
sor failures, and tune the IODetector design to trust more on the
cellular and GNSS sensors for those phone models. After the sys-
tem upgrade, the achieved 10th percentile accuracy and the overall
average improve by 2.9% and 0.2%, respectively.

Future research. We expect future studies that deal with the
trade-off between theworst cases and overall performance for better
technology adoption in business.

4.4 Rule-based v.s. ML-based
Machine learning (ML)-based sensing techniques [6, 20, 22] have
been popular for a wide range of applications in recent years. There
are rule-based solutions [8, 33, 37] as well as ML-based methods
[30, 31] proposed for indoor/outdoor detection. We carefully in-
vestigated the two technology threads in our feasibility study. We
implemented and compared three solutions, i.e., the initial IODe-
tector, Semi-IO which is an ML-based design reproduced from [30],
and CNN-IO built with CNN-based indoor/outdoor classification.
Semi-IO and CNN-IO are trained with 80% of the vision-based la-
bels collected from 3 AoIs in Shanghai (see Section 3.2). Our major
observation is that while ML-based solutions may arrive at the
high average performance if sufficiently trained, their performance
deviation can be much higher and they may be very sensitive to
the difference between the training and testing environments.

Figure 16(a) depicts the detection accuracies of the three solu-
tions when tested with the same 3 AoIs for training the ML-based
solutions. We see CNN-IO achieves the highest average accuracy
of 91.6%, while the IODetector achieves the lowest average accu-
racy of 88.2%. Nevertheless, the worst cases of both CNN-IO and
Semi-IO are lower than the IODetector. Figure 16(b) further depicts
the results when the three solutions are tested with 15 different
AoIs in Shanghai. While the IODetector’s accuracy maintains at
86.3%, the accuracies of Semi-IO and CNN-IO drop to 83.8% and

81.4%, respectively. The 10th percentile accuracies of Semi-IO and
CNN-IO significantly drop to 68.9% and 66.8%. We see rule-based
solutions achieve better reliability and generality, which are the ma-
jor considerations for large scale deployment. Thus the rule-based
design is employed in our final adoption. The underperformance
of ML-based solutions we believe is primarily due to the limitation
in obtaining sufficient high-quality training data to cope with the
environmental diversity.

Future research.We expect future studies on how to balance the
reliability, generalizability and accuracy when designing ML-based
solutions for general or large scale mobile sensing applications.

5 RELATEDWORK
Real world mobile system experience. Many recent research
works [7, 10, 21, 25, 28, 32] report the experience of large scale
system deployment. Ding et al. [14] introduce the experience of
deploying a virtual arrival detection system for on-demand food
delivery. Li et al. [25] report the lessons of developing and using Mo-
bileInsight for mobile network analytics. Sevilla et al. [32] present
the experience of deploying CoLTE for small-scale, community
owned and operated LTE networks. Boateng et al. [10] describe
the experience of implementing a wrist-worn computing device for
mobile health apps. Optasia [28] is a data flow system for process-
ing queries on video feeds from many cameras. MONROE [7] is
an open access platform for experimenting on operational mobile
networks. Kim et al. [21] introduce the experience of deploying
smart market applications in an urban large-scale market. To the
best of our knowledge, this paper is unique in its focus on ambi-
ent mobile sensing and its deployment scale that concerns over 3
million phones across 367 cities in a country.

Indoor/outdoor detection. There are two categories of in-
door outdoor detection solutions in the literature, i.e., general
purpose approaches [30, 37] for all scenarios and dedicated ap-
proaches [8, 11, 17, 27, 33] for specific applications or with extra
hardware/resource in addition to COTS mobile phones. The first
and most impactful work on indoor/outdoor detection is the IODe-
tector [37], based on which we design the basic architecture of our
tool used in the deployment. Subsequent research works propose
alternatives to IODetector. Radu et al. [30] make indoor/outdoor
detection with semi-supervised learning for adaptive parameter
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selection. Liu et al. [27] propose to combine light sensor and cellu-
lar module for indoor/outdoor detection. Sung et al. [33] propose
sound-based indoor/outdoor detection to achieve seamless han-
dover of positioning systems. Canovas et al. [11] use Wi-Fi signal
with AdaBoost to infer the indoor/outdoor condition. SenseIO [8]
infers the environment type (e.g., rural and urban) leveraging the
sensor-rich smartphones. Esmaeili Kelishomi et al. [17] detect the
indoor/outdoor environment according to different user activities.
To our knowledge, none of above works report results from large
scale experimentation. In this paper, we compare different design
alternatives and choose to adopt a rule-based solution for practica-
bility and generalizability considerations.

On-demand food delivery.While the on-demand food delivery
has been a booming business that has mainly been driven in the
industry, there are also many research works to understand its
characteristics and improve its efficiency. Li et al. [23] present a
technology review on positive and negative impacts of the on-
demand food delivery. Zhu et al. [38] propose a DNN-based model
to predict critical time points in the order servicing cycle. Ding et
al. [12] develop a delivery scope generation framework to draw
suitable delivery scopes for millions of restaurant partners.

6 CONCLUSION
This paper presents our experience in adopting indoor outdoor
detection to support a real world business of on-demand food deliv-
ery. We share our deployment experience, lessons learned on real
world know-hows and practical considerations of the technology
adoption, based on which we also discuss possible future research
topics.
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